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Introduction

Computers, Language, and Word Meaning

With the availability of high computing power and large amounts of data, automatic systems
that process language have become increasingly powerful. It is possible to extract different
aspects of information from texts and use automatic systems to perform complicated linguistic
tasks. For many, the most impressive achievement might be that automatic systems have
started to reach high performance on tests that assess a system’s ability to engage in common
sense reasoning. Consider the following example:

(1) Sam pulled up a chair to the piano, but it was broken, so he had to stand instead. What
was broken?1

In order to answer the question posed in Example 1 correctly, it is necessary to infer
which of the candidate referents in the sentence are likely to be referred to by the pronoun it.
Possible referents are Sam, the chair, and the piano. If the name Sam is recognized as a likely
reference to a human, two candidates remain: chair and piano. In order to decide which of
the remaining candidates is the more likely referent, it is crucial to know that an essential
function of a chair is to provide a surface for sitting and that having to stand means not being
able to sit. If Sam has to stand, he cannot sit on the chair and thus it is likely that the thing
that is broken is the chair rather than the piano. A computational system that can solve this
problem can thus be expected to have a rich, semantic representation of the words chair and
stand and use them to reason over the possible referents of the pronoun it.

The interpretation of words is a crucial component of many Natural Language Processing
(NLP) problems (traditionally referred to as ‘tasks’). For instance, the correct resolution of
pronouns in a text may require rich, semantic knowledge. Other highly semantic tasks also
require deep semantic understanding, such as for instance question-answering or tasks that
involve reasoning over specific entities or events expressed in texts (e.g. entity and event
co-reference). Most state-of-the-art NLP systems rely on word representations that are derived
from large amounts of textual data. While they lead to successful results for many tasks,
they are by no means perfect and still make seemingly silly mistakes (e.g. Staliūnaitė and
Iacobacci, 2020). This may indicate that the word representations they rely on are not always
accurate. Beyond the problem of accuracy, it has been shown that word representations
capture social biases that impact the behavior of systems and can lead to results that reproduce
stereotypes (Zhao et al., 2019, 2018; Rudinger et al., 2018). Rudinger et al. (2018) show that
co-reference resolution systems make mistakes rooted in gender bias. For example, female
pronouns and words such as surgeon are likely not recognized as labels of the same referent

1Taken from the Winograd Schema Challenge https://cs.nyu.edu/~davise/papers/
WinogradSchemas/WSCollection.html
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INTRODUCTION

even if the relation is expressed in the text (e.g. The surgeon couldn’t operate on her patient:
it was her son.).

In this thesis, I will explore the semantic content of data-derived representations that
underlie many NLP systems. Beyond having practical implications for the field of NLP, the
question of what aspects of word meaning can be captured purely on the basis of how they
are used in texts addresses fundamental questions within the field of distributional semantics
(Lenci, 2008). While this thesis does not provide exhaustive answers, it constitutes an ap-
proach towards ‘diagnosing’ different aspects of semantic knowledge in word representations
used in high-performing NLP systems.

You shall know a word...

What does it mean to know the meaning of a word? Is it being able to recite its dictionary
definition? Or does it mean being able to point to instances of the concept in the world? Being
able to translate it into different languages? When do we know that a computational system
‘knows’ the meaning of a word?

While this question of how the meaning of a concept can be defined is notoriously difficult
to answer, it is possible to think of various ‘tests’ that can indicate whether a person (or
a computational system) has some sort of understanding of a concept. For instance, it is
possible to assess knowledge about words in terms of similarities and differences using the
following task:

(2) Which word pair is more similar?

a. strawberry - raspberry

b. strawberry - bicycle

There are multiple ways by which one could arrive at the correct answer: Both words in
pair (a) refer to fruits whereas bicycle in pair (b) refers to a vehicle. Both words in (a) refer to
red berries, which only applies to one of the words in (b). Both words in (a) refer to edible
things, which is not the case in (b). All of these approaches lead to the correct answer, but use
different aspects of word meaning to reason over the similarities and differences between the
words. The correct answer by itself does not reveal which approach was taken.

A more explicit approach is to ask for an enumeration of all aspects of the meaning of
a word in the form of features. For instance, the word strawberry could be defined by red,
fruit, berry, edible, juicy, sweet. The difficulty of such an approach lies in assessing the
answer: When do we have enough features to determine that the answer is ‘correct’? How
fine-grained do the features have to be? Do they only have to include salient or discriminatory
aspects? Where is the line between salient features and non-salient features?

Despite their problems, semantic features allow us to determine whether a model can
capture specific aspects of word meaning. Rather than attempting to produce exhaustive
descriptions in terms of feature lists, we can use them in a more targeted way: Given a
collection of words, is it possible to test whether a computational model can detect all words
with a specific feature?

xii



(3) Which of the following concepts can be described by can fly?

a. seagull

b. table

c. airplane

d. penguin

e. bee

f. strawberry

Identifying all words whose meaning can be described by can fly entails knowing that
things referred to as seagull, airplane or bee, despite belonging to different categories, all
share the ability to fly. Beyond this, it also entails knowing that neither of the things described
by table, penguin and strawberry have the ability to fly. Thus, this task cannot be solved
by relying on general similarity: Even though seagull and penguin are similar to each other
in many ways, they do not share the ability to fly. Airplane and bee, in contrast, describe
radically different things that share hardly any features except for the target feature.

...by the company it keeps?

A different approach to word meaning argues that knowing the meaning of a word in essence
means knowing how to use the word correctly. From this perspective, word meaning arises
from the different situations in which a word occurs. Intuitively, we can infer the meaning
of a new word based on its surrounding words. In the following examples, a word has been
replaced by the character ‘X’, but can still be inferred fairly easily based on the words in its
surroundings:2

(4) a. Would you like a drink, or X?

b. The X wasn’t very hot though, made in a filter pot, but it was good.

c. Eugene put a spoonful of powdered X into his cup and then filled it with hot
water.

d. She sees that there is a cup of steaming hot X awaiting him and the two chat
informally as she presents the rules of the center and explains procedures.

e. She could not face X or tea without milk, and was always craving types of food
that were not available aboard a sailing ship.

Most people will be able to infer that X must refer to a hot drink that is similar to tea,
often consumed with milk, and can be prepared by means of a filter or dissolving powder.
For competent speakers of English familiar with the target concept, it is most likely easy to
guess that the word replaced by X must most likely be coffee, as they are able to interpret the
words in its environment and probably remember that they have seen coffee appear in similar
linguistic environments.

2The example sentences are taken from the Brown corpus (Kučera and Francis, 1967).
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INTRODUCTION

The intuition of being able to infer word meaning based on word co-occurrence has been
formalized in the Distributional Hypothesis (Harris, 1954; Firth, 1957) and implemented as
a computational approach to the representation of word meaning. In such computational
models of meaning, individual words are represented in terms of how often they co-occur
with other words in the vocabulary. Such representations can either be created by means of
vectors that contain co-occurrence counts over the entire vocabulary or by means of machine
learning models. Regardless of the specific computational architecture underlying the model,
the intuition remains the same: Each word is represented by a vector in a vector space. Words
which appear in similar contexts receive similar vector representations and thus appear in
close proximity to one another in the vector space. The words coffee and tea should be placed
close together, just like the words strawberry and raspberry. In contrast, the words raspberry
and bicycle should be placed in different areas of the semantic space.

Such word representations have not only been shown to reflect human similarity judg-
ments to some degree, but, more importantly, have proven highly successful when used
in systems designed to perform complex semantic tasks. For instance, such distributional
word representations have led to high performance for many NLP tasks, such as sentiment
classification (i.e. automatically detecting whether a text expresses a positive, negative or
neutral attitude towards something) (Socher et al., 2013), co-reference resolution (Zhou and
Xu, 2015), and named entity recognition (Pennington et al., 2014). The fact that embedding
representations improve performance on such tasks implies that they somehow capture rich,
semantic information that can be used by systems to make semantically informed decisions.
Experiments that compare distributional spaces to spaces defined by human-elicited semantic
features show that they do, at least to some extent, represent comparable information (Fa-
garasan et al., 2015, e.g.). However, it is not clear whether they can capture specific semantic
features that can be used to reason over fine-grained differences between concepts.

Such semantic representations can be created by machine learning models that learn
to predict word-context combinations. Such models can be seen as language models that
provide word representations by means of aggregating information over all contexts of a word
in a corpus in a single representation. A different way of modeling language is to ‘learn’
contextualized representations by means of predicting the next word in a sequence. The
intuition is easy to understand for anyone who has ever listened to someone on the phone
with bad connection. Consider the following utterances:

(5) a. Hi, just wanted to know what you’ve been up [noise]

b. I just got off work and am waiting for the [noise]

c. It’s been raining all [noise]

d. What should we have for [noise]

Most competent speakers of English will be able to make fairly accurate guesses about
which words have been cut-off by the bad connection. A traditional language model is trained
on predicting the next word in a sequence of words. By performing this task, the model
acquires certain aspects of linguistic information that arise from the distribution of words
over different contexts. In contrast to the context-free distributional models described above,
such models acquire context-dependent representations of words. Rather than creating a

xiv



single representation for each word, the models represent words given particular contexts. For
example, such models should be able to capture that the word star can appear in contexts in
which it refers to a celestial body and in contexts in which it refers to a celebrity.

Building upon this core idea, a family of recently proposed models (Bert and Roberta
(Devlin et al., 2019; Liu et al., 2019)) have led to considerable performance gains for a number
of tasks requiring semantic knowledge. Context-free and contextualized models differ in
terms of their architectures and, more importantly, in terms of how they are used to perform
NLP tasks. Rather than extracting word representations and using them in a downstream tasks
(context-free models), the new variants allow for a set-up in which the entire trained language
model is ‘fine-tuned’ to perform a particular NLP task.

Despite impressive performance gains, current systems are still far from perfect and make
embarrassing mistakes. For instance, a systematic study of various linguistic phenomena
shows that Bert can hardly ever process negation correctly (Ettinger, 2020). Using a question-
answering set-up, Staliūnaitė and Iacobacci (2020) show that Bert and similar models tend to
fail on examples that require inference, in particular when it involves compositional meaning
(i.e. meaning that arises from the manner in which multiple words are combined to form a
phrase or clause).

The successes and failures of language models raise questions about what aspects of
linguistic, and, in particular, semantic knowledge they can capture. Are they even equipped
for the type of reasoning they seem to be performing when, for example, solving complex
pronoun resolution in so-called Winograd problems (Example 6)?

(6) The trophy doesn’t fit into the brown suitcase because it is too large. What is too
large? (Possible answers: the trophy, the suitcase)

Recent work on dataset biases has shown that many datasets aimed at testing the capa-
bilities of language models, such as complex pronoun resolution (Sakaguchi et al., 2020;
Elazar et al., 2021; Abdou et al., 2020) or Natural Language inferencing (Poliak et al., 2018)
allow models to perform highly without actually solving the target task. Rather, the train- and
test sets contain spurious correlations that models can exploit. These observations call into
question to what extent language models can represent aspects of semantic knowledge.

Research Question

The goal of this thesis is to shed light on what aspects of word meaning language model
representations carry. Knowing what information is there in the first place can help us
understand what kind of information systems have access to and thus help us make better
decisions about their design. Knowing what aspects of information tend to be encoded in
distributional co-occurrence patterns is an important question in its own right as it may help
us to arrive at a more fine-grained understanding of the distributional hypothesis. I formulate
the central question of this thesis as follows:

What aspects of conceptual knowledge are reflected by the co-occurrence patterns captured
by large-scale language models?

xv



INTRODUCTION

I address the central research question in three steps:

Step 1 : Create a model of conceptual knowledge and property expression for the investiga-
tion of language model representations.

Step 2 : Capture human conceptual knowledge in a dataset suitable for the investigation of
language models.

Step 3 : Use interpretability methods for context-free and contextualized language models
to study which aspects of semantic knowledge they represent.

Each of the three steps can be divided into sub-problems.

Step 1: A Model of Conceptual Knowledge and Property Expression

As illustrated above, determining whether a computational model has knowledge about
specific semantic information is not trivial and comes with methodological challenges. An
investigation of conceptual knowledge in distributional representations should lead to sound
insights that can reveal, or at least indicate, general tendencies about the type of semantic
information that tends to be reflected by co-occurrence patterns. I design a model of conceptual
knowledge and property expression that fulfils two criteria:

• It should be possible to derive hypotheses about the specific factors that determine whether
properties are expressed in corpora.

• It should be possible to represent conceptual knowledge in such a way that insights gained
from the analysis of distributional models are informative given the methodological
challenges of analyzing distributional models.

Step 2: A Dataset of Conceptual Knowledge

The investigation of conceptual knowledge in distributional representations requires a dataset
that can be used to detect or ‘diagnose’ aspects of conceptual knowledge. Such a dataset
should consist of properties and concepts that can be used for testing what aspects of word
meaning large scale language models can reflect. As illustrated above, testing whether a
computational model has knowledge about a specific semantic property is not trivial and
comes with methodological challenges. In particular, it requires a specific distribution of
positive and negative examples (recall the positive and negative examples of can fly discussed
in Example 3, which included seagull, airplane, and penguin). Beyond testing knowledge
about specific semantic properties, the dataset should be suitable for testing hypotheses
derived from the model of conceptual knowledge and property expression. The construction
of a reliable dataset that can lead to insights about property representation in language model
representations entails the following steps:

Step 2-a Elicit a substantial number of fine-grained semantic judgments about conceptual
knowledge from human participants.
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Step 2-b Evaluate the quality of semantic judgments given that fine-grained semantic annota-
tion tasks are likely to encompass phenomena that trigger disagreement between annotators.

Step 2-c Assess the resulting diagnostic dataset in terms of its ability to yield insights about
specific hypotheses and its adherence to methodological requirements.

Step 3: Interpretability Methods and Experiments

The diagnostic dataset forms the basis for interpretability experiments designed for the analysis
of non-transparent representations derived from machine learning models. Existing methods
aim to provide insights into the black box nature of many current NLP approaches. While
such methods have yielded insights about aspects of linguistic information captured by deep
learning models, they struggle with a number of methodological challenges and are highly
sensitive to noise (Belinkov and Glass, 2019; Belinkov, 2021). The model of conceptual
knowledge and diagnostic dataset proposed in this thesis are primarily designed for the
interpretation of context-free distributional representations. The emergence of contextualized
models poses new challenges deriving reliable insights by means of diagnostic methods. I
propose the following steps to approach these challenges:

Step 3-a Define control tasks and informative baselines that help to distinguish results caused
by noise and accidental correlations from meaningful signals.

Step 3-b Use corpus analysis to verify the results of diagnostic experiments.

Step 3-c Design tasks that are suitable for the analysis of contextualized models.

Outline and Contributions

This thesis consists of five parts. Apart from Introduction and Conclusion, each part is divided
into several chapters. In this section, I provide an overview of the chapters and their most
important contributions.

Part I: Background

Part I presents the core concepts used in the thesis and outlines the most important findings
from existing research about conceptual knowledge in distributional representations. I illus-
trate the limitations of distributional models through two use-cases that apply distributional
representations to the study of specific concepts.

Chapter 1: Core Concepts and Related Work The chapter outlines the most important as-
sumptions behind the core concepts underlying the research presented in this thesis: Firstly, it
introduces the Distributional Hypothesis and different types of distributional semantic models.
Secondly, it suggests semantic properties as an empirical approximation of word meaning and
reviews existing datasets that capture this type of conceptual knowledge. Thirdly, the chapter
reviews insights from existing research on conceptual knowledge in word representations.
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INTRODUCTION

Chapter 2: Two Use-Cases To demonstrate the limitations of embedding representations
when used for fine-grained semantic analysis, I present two studies that evaluate the suitability
of distributional semantic representations for the study of specific concepts from a usage-based
perspective, in particular with respect to semantic variation and change.

Contributions

• The first use-case examines the methodological challenges of studying conceptual change
using distributional models. The study resulted in a number of practical recommendations
for drawing reliable conclusions from models prone to representing noise.

• The second use-case presents an evaluation of distributional models specifically designed
for small data using a network of philosophical concepts. The results indicate that small-
date models have potential, but cannot represent philosophical concepts accurately enough
for supporting philosophical research.

Part II: Model

In Part II of the thesis, I introduce the model and design underlying the diagnostic dataset.
The part addresses Step 1 and consists of the following chapters:

Chapter 3: Semantic Property Information in Text Chapter 3 proposes a model of
conceptual knowledge and property expression. A core assumption of the model is that
semantic properties constitute highly implied knowledge. An explicit mention of a semantic
property will, in many situations, constitute a violation of the maxim of quantity following
Grice’s (1975) co-operative principle. There are, however, a number of situations in which
mentioning property-information can be justified. In some cases, properties are variable (e.g.
apples come in different colors) and specifying a particular color can constitute necessary
information. In other cases, properties enable particular activities or functions and determine
how we interact with the world. Such activities and functions are components of events and
thus likely to be mentioned explicitly (e.g. the sharp edge of a knife enables cutting). The
model results in a framework of hypotheses about the expression of property information in
text on the basis of specific relations between properties and concepts.

Chapter 4: Methodological Framework and Dataset Architecture The analysis of distri-
butional representations is not trivial and runs risk of yielding misleading results. In Chapter 4,
I consider the specific challenges involved in determining whether distributional representa-
tions carry information about specific semantic properties. Based on these considerations,
I design a diagnostic dataset. Specifically, I select properties and concepts in such a way
that they should lead to insights despite the methodological challenges. As illustrated above,
distinguishing positive from negative examples of a property should only be possible if the
property in question is identified (see positive and negative examples of can fly in Example 3).
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Contributions

• Chapter 3 results in a theoretical model of the expression of semantic property-evidence
in text. The model can be used to derive specific hypotheses about property expression.

• Chapter 4 presents a methodologically informed dataset design. Testing semantic property
knowledge in distributional models runs risk of yielding misleading results. The design
of the dataset presented in this chapter specifically addresses this challenge.

Part III: Dataset

Part III of the thesis is dedicated to the creation of a diagnostic dataset. It focuses on the
collection of fine-grained and reliable semantic judgments by means of crowd annotation and
the assessment of the resulting dataset. The three chapters of Part III outline the task design,
annotation evaluation, and assessment of the resulting dataset. Each chapter addresses one
component of Step 2:

Chapter 5: Annotation Task Chapter 5 outlines the collection of fine-grained semantic
judgements of property-concept pairs by means of a crowd annotation task. The chapter
presents the task design, annotation procedure, and approach chosen to recruit participants.
The annotation was carried out in multiple cycles. I provide information about the versions of
the dataset resulting from each annotation cycle.

Chapter 6: Evaluating Crowd Annotations Chapter 6 presents an approach towards
evaluating crowd annotations. The diagnostic dataset presented in this thesis was collected
by means of distributing the annotation efforts over many untrained workers who provided
semantic judgments. To ensure that the task results in reliable annotations, it has to be
evaluated. A common practice for such evaluations is measuring the agreement between
participants. However, in the case of the diagnostic dataset, agreement alone is not a suitable
indicator of quality. The task required participants to judge relations between properties and
concepts. Participants were confronted with a number of linguistic phenomena that can trigger
multiple justified interpretations. Thus, disagreement among annotators can be a reflection of
linguistic phenomena rather than a sign of low quality. I design an alternative quality metric
based on logical contradictions and evaluate it against expert annotations. The logic-based
metric gives reliable insights about annotation quality. Even though the logic-based check I
used was specific to the annotation task at hand, the principle of using a task-inherent, logic
based metric rather than annotator agreement to establish quality can also be applied to other
annotation tasks.

Chapter 7: A Corpus of Properties, Concepts, and Relations Chapter 7 presents an
analysis of the diagnostic dataset. Based on the theoretical and methodological considerations,
I constructed a dataset encompassing 21 semantic properties associated with positive and
negative examples that can be used in diagnostic experiments. The set of examples is large
enough to enable classification experiments using held-out test sets. Each property-concept
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INTRODUCTION

pair in the dataset was labeled with linguistic factors proposed in the model of conceptual
knowledge by crowd annotators. Each semantic property dataset was evaluated with respect
to the methodological requirements that informed the design.

Contributions

• The research presented in Chapter 6 resulted in an approach to the evaluation of semantic
judgments made by crowd annotators. The approach is independent of inter-annotator
agreement as it relies on the logic and coherence answers given by individual annotators.
The evaluation metric provides information that is complementary to traditional inter-
annotator-agreement metrics and the CrowdTruth approach presented by Dumitrache et al.
(2019).

• Chapter 7 presents a diagnostic dataset of concepts, properties, and fine-grained relations
between properties and concepts. The dataset contains 21 different semantic proper-
ties. Each property has positive as well as negative examples that allow for diagnostic
experiments.

Part IV: Experiments

Part IV of the thesis presents experimental work based on the diagnostic dataset. The central
goal of this part is to design experimental set-ups and frameworks for analysis that can
lead to reliable insights about semantic properties in distributional representations given the
methodological problems of interpretability methods. The three chapters in this part address
the components of Step 3:

Chapter 8: Diagnostic Classification of Context-free Embeddings Chapter 8 presents
two diagnostic experiments that examine context-free embeddings. A problem of many
existing interpretability methods concerns the interpretation of their results. Diagnostic
classification, a commonly used method for examining the information captured by latent
representations, encompasses the risk of yielding misleading results. High results (i.e. results
indicating that representations carry a particular aspect of linguistic information, such as a
semantic property) can be caused by noise in the data or unwanted correlations rather than
the target information. Chapter 8 shows how control tasks and baselines can be used as a
powerful critical lens that enables a distinction between most likely valid and misleading
results, in particular when combined with a methodologically informed dataset. In addition, I
show how the diagnostic dataset can yield insights in an error analysis.

Chapter 9: Evidence Analysis in Two Corpora Chapter 9 presents an analysis of property-
evidence in two corpora underlying the context-free models examined in Chapter 8. The
chapter shows that the dataset can be used to verify results of diagnostic methods by means
of corpus analysis. In addition, I examine property-evidence in the corpora with respect to the
hypotheses derived from the theoretical model presented in Chapter 3. While the results are
limited by small data and potential noise, it is possible to observe several initial tendencies in
line with the hypotheses.
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Chapter 10: Challenging Contextualized Language Models In Chapter 10, I present
two approaches to the analysis of contextualized language models. I use two template-based
behavioral tasks to examine pre-trained and fine-tuned models. The results of the experiments
do not show clear patterns with respect property representation in language models. Rather,
they indicate that the models may be exploiting other linguistic patterns captured by the
models. This observation highlights the question of whether models trained on a specific task
learn information that is relevant for the task or whether they exploit other regularities that
accidentally lead towards high performance.

Contributions

• The research presented in Chapter 8 resulted in an elaborate set-up for diagnostic experi-
ments involving upper and lower bounds. These bounds indicate performance ranges a
diagnostic classifier should reach if it can indeed identify property information.

• The corpus analysis presented in Chapter 9 provides a verification of the diagnostic
experiments.

• The corpus analysis presented in Chapter 9 shows initial tendencies about potential
underlying factors that impact whether property evidence is mentioned in corpora.

• The experiments presented in Chapter 10 demonstrate a way of using the diagnostic
dataset to examine pre-trained and fine-tuned contextualized language models.

• The three chapters in Part IV of the thesis examine semantic properties in distributional
models from different perspectives. While it is difficult to derive clear-cut insights from
individual experiments, the combination of several approaches revealed initial tendencies.

The concluding chapter contains an overview of the main findings of the research and
provides an outlook for future research.

Main Findings

The research presented in this thesis has led to the following insights: Controlled diagnostic
experiments in combination with the corpus analysis indicate that context-free distributional
representations do not encode information about perceptual properties. For other proper-
ties, the results indicate that the representations are likely to encode fine-grained semantic
categories rather than property-specific information. The analysis of contextualized represen-
tations highlighted the challenges involved in deriving reliable insights from such models.
The results of the challenge task used to examine the knowledge captured by two contex-
tualized models show that there is a considerable risk that models can exploit superficial
linguistic patterns. The patterns tend to correlate with the correct answer, but do not reflect
the information under investigation.
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INTRODUCTION

Publications, Software, and Data

The work conducted as part of the research presented in this thesis resulted in 6 publications,
partly accompanied by additional resources (code and data). The publications are the results
of collaborations. Table 1 provides an overview of the publications, resources, and my roles
in the collaborations. This thesis is partly based on currently unpublished research. Data and
code accompanying the unpublished components of this thesis are summarized in Table 2.

Chpt. Publication Resource

2

Pia Sommerauer and Antske Fokkens. 2019. Conceptual
change and distributional semantic models: an exploratory
study on pitfalls and possibilities. In Proceedings of the
1st International Workshop on Computational Approaches to
Historical Language Change, pages 223–233, Florence, Italy.
Association for Computational Linguistics

https://github.
com/cltl/
semantic_space_
navigation

2

Yvette Oortwijn, Jelke Bloem, Pia Sommerauer, Francois Meyer,
Wei Zhou, and Antske Fokkens. 2021. Challenging distri-
butional models with a conceptual network of philosophi-
cal terms. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 2511–2522,
Online. Association for Computational Linguistics

https://github.
com/YOortwijn/
Challenging_DMs

Co-supervision of Yvette Oortwijn, helped with the evaluation
set-up and implementation.

3

Pia Sommerauer. 2020. Why is penguin more similar to polar
bear than to sea gull? analyzing conceptual knowledge in distribu-
tional models. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: Student Research
Workshop, pages 134–142, Online. Association for Computa-
tional Linguistics

4

Pia Sommerauer, Antske Fokkens, and Piek Vossen. 2019. To-
wards interpretable, data-derived distributional semantic repre-
sentations for reasoning: A dataset of properties and concepts.
In Wordnet Conference, page 85

https://github.
com/cltl/
semantic_
property_
dataset

5

Pia Sommerauer, Antske Fokkens, and Piek Vossen. 2020.
Would you describe a leopard as yellow? evaluating crowd-
annotations with justified and informative disagreement.
In Proceedings of the 28th International Conference on
Computational Linguistics, pages 4798–4809, Barcelona, Spain
(Online). International Committee on Computational Linguistics

https://github.
com/cltl/SPT_
crowd_data_
analysis

8

Pia Sommerauer and Antske Fokkens. 2018. Firearms and
tigers are dangerous, kitchen knives and zebras are not: Testing
whether word embeddings can tell. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 276–286

https://github.
com/cltl/
semantic_space_
navigation

Table 1: Overview of published work.
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Chpt. Contribution Resource

7 Diagnostic dataset
https://github.
com/PiaSommerauer/
PropertyConceptRelations

8 Controlled diagnostic experiments
https://github.
com/PiaSommerauer/
ControlledPropertyDiagnostics

9 Corpus analysis
https://github.
com/PiaSommerauer/
CorpusDiagnostics

10
Masked token prediction task for contex-
tualized language models

https://github.
com/PiaSommerauer/
PropertyConceptPrediction

10
Winograd-style challenge for contextu-
alized models

https://github.com/
SanneHoeken/diagnostic_
dataset_experiments

(The dataset generation and experiments
were implemented by Sanne Hoeken and
supervised by Piek Vossen and me.)

Table 2: Overview of currently unpublished work.
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Part I

Background

1





The first part of this thesis presents the core concepts of this thesis, namely a perspective
on word meaning through the notion of semantic properties, distributional semantics and
distributional semantic models. I review existing work that considers distributional meaning
representations through the lens of semantic properties and summarize what has been observed
so far (Chapter 1). Subsequently, I present two case-studies in which distributional models
are used to study fine-grained semantic differences (Chapter 2). These studies illustrate the
current limitations of distributional models and stress the need for fine-grained explorations
of what they represent.





1. Core Concepts and Related Work

1.1 Introduction

A major difficulty of investigating the meaning captured by distributional representations of
words lies in their non-transparency; vector representations derived from machine learning
models can act as rich sources of information for other machine-learning systems, but remain
opaque to humans. While they have been shown to provide good indications of lexical
similarity by means of distance in the vector space (e.g. cat is closer to dog than to table), it
is difficult to design lexical evaluation tasks that can provide insights into specific aspects of
semantic information. For example, it is difficult to assess whether the vectors also capture
that cats and dogs are furry mammals, but cats tend to purr while dogs bark. This thesis
aims to present a framework for investigating specific semantic properties in distributional
representations. Such a framework should fulfill two requirements: (1) It should provide
insights into underlying tendencies of what type of information distributional representations
tend to capture. (2) The framework should consider the methodological challenges involved
in interpreting nontransparent distributional representations.

In this chapter, I introduce three core concepts that constitute the main pillars of the
research presented in this thesis. The explanations of the core concepts are intentionally kept
‘light-weight’ and accessible, as they will be taken up again and discussed in more detail in
the subsequent chapters of the thesis. The remainder of this chapter is structured as follows:
Firstly, I present the main assumptions behind distributional approaches to the representation
of word meaning and outline the most important characteristics of distributional semantic
models (Section 1.2). Secondly, I introduce the notion of semantic properties as imperfect but
useful approximations of word meaning for the investigation of distributional representations
and review existing semantic property datasets (Section 1.3). Thirdly, I review existing
approaches to the study of semantic properties in distributional representations (Section 1.4).
The chapter is concluded by an overview of common tendencies that have emerged from
existing research and the limitations of existing approaches (Section 1.5) and a brief outline
of the contributions of this thesis (Section 1.6).

1.2 Distributional Meaning Representations

Distributional meaning representations can provide rich semantic information but, at the same
time, they are difficult to interpret for humans. What appears to be a contradiction can be
understood when considering the assumptions and mechanisms behind such word represen-
tations. This section provides an outline of the theoretical ideas underlying distributional
representations (Section 1.2.1), followed by an overview of traditional, context-free models
(Section 1.2.2) and more recent contextualized models (Section 1.2.2).
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CHAPTER 1. CORE CONCEPTS AND RELATED WORK

1.2.1 The Distributional Hypothesis

Even though more recent approaches to language modeling may seem detached from lin-
guistic theories, the core assumptions of distributional representations are grounded in the
Distributional Hypothesis attributed to Firth (1957) and Harris (1954). The Distributional
Hypothesis states that word meaning arises from the linguistic contexts in which a word is
used. Lenci (2008) distinguishes between two possible interpretations of the hypothesis: A
strong interpretation of the Distributional Hypothesis refers to a view in which linguistic
co-occurrences are seen as having a causal role; they do not just merely reflect but constitute
word meaning. In contrast, a weak interpretation of the hypothesis states that linguistic
co-occurrence patterns can reflect word meaning but do not have a causal role. The two
perspectives are not necessarily mutually exclusive; Lenci argues for a mixed view. Following
this perspective, distributional co-occurrence patterns may indeed be the main source of
information for abstract semantic information, such as abstract concepts, taxonomic infor-
mation (e.g. the fact that a lion is an animal) and different cognitive processes. Perceptual
information, in contrast, is more likely to arise from our embodied experience of the world.
This type of information may, however, (at least to some degree) be reflected by distributional
co-occurrence patterns. This thesis does not argue for either of the two views. Rather, this
thesis aims to explore what aspects of word meaning distributional models can reflect. The
fact that specific semantic information is or is not encoded in distributional representations is
not necessarily evidence for the strong or weak view.

It should also be kept in mind that the distributional semantic models studied in this
thesis are trained on large but finite corpora of written text. From a linguistic point of view,
distributional information can refer to all aspects of language use and is certainly not limited
to the patterns that arise from a specific selection of linguistic texts published on the internet
and collected in a corpus. Thus, the insights from the experiments conducted in this thesis
can only inform conclusions about the information encoded in specific models created on the
basis of specific corpora.

1.2.2 Distributional Models

The core idea behind distributional semantic models is to represent words by generalizing over
co-occurrence patterns. This principle can be implemented in a variety of ways. Traditionally,
a single distributional representation captures one word form. It unites all linguistic contexts
in which the word is used and can therefore not reflect different usages of polysemous
words. More recently, a different approach has become popular; in this approach, words
receive context-specific representations. This means that a single word form receives multiple
representations for different types of contexts in which the word is used. I first explain the
fundamental notions of context-free models (the former type) before outlining contextualized
models (the latter type).

Context-free Models

Count-based models The simplest way of creating a distributional semantic model is to
count word co-occurrences: For each word, all co-occurrences with all other words in a

6



1.2. DISTRIBUTIONAL MEANING REPRESENTATIONS

corpus are recorded. The resulting counts are captured in a vocabulary-by-vocabulary matrix.
Each word is represented by a vector in the matrix. Words with similar contexts will have
similar vector representations. The similarity between two representations can be calculated
by means of their cosine angle. When implementing such an approach, it is necessary to
define how much context should be taken into account. For example, it is possible to consider
the entire document in which a word appears. More common approaches define so-called
context windows as a specific number of words (e.g. 2) preceding and following the target
word. Context windows can also be based on syntactic information (Padó and Lapata, 2007).
The nature of the context-window impacts the information represented by the model.

One of the first approaches that implemented the distributional idea of representing word
meaning is called Latent Semantic Analysis (LSA Landauer and Dumais (1997)). In this
approach, the context of a word is defined as the entire text document in which it appears.
Each word is represented in terms of how often it appears in the documents that make up
the corpus. The resulting counts are recorded in a matrix of words and documents. Each
matrix column represents one document. Words with similar meaning are expected to occur
in the same documents. The matrix thus also allows for measuring the similarity between
documents: Each document is represented by its words. Similar documents have high lexical
overlap. The size of the matrix can be reduced by means of Singular Value Decomposition.

An alternative approach to defining the linguistic context of a word is to focus on a rather
narrow window surrounding the target word (e.g. two words preceding the target word and
two words following it). In such an approach, each word is represented in terms of how
often it co-occurs with any other word in the vocabulary within the predefined window. This
approach results in a co-occurrence matrix in which each word is represented by a word
vector with as many dimensions as there are words in the vocabulary. Words with similar
vectors occur in similar contexts and are expected to have similar meaning. A disadvantage
of purely count-based approaches is that the pure count information does not control for
frequency differences between words: Highly frequent words (e.g. the determiner the) will
have higher values than words with lower frequencies (e.g. coffee), regardless of their co-
occurrence patterns. To account for this effect, information-theoretic count statistics based
on mutual information can be used. The goal of such statistics is to provide a more accurate
representation of informative co-occurrences; word pairs that occur in each other’s contexts
more often than independently of one another of one another should receive high values (e.g.
coffee and tea).

Prediction-based models A particularly popular implementation of a distributional model
relies on machine learning rather than count-based statistics. The models proposed by Mikolov
et al. (2013a) and Mikolov et al. (2013b) and implemented in the Word2vec toolkit rely on a
form of supervised learning. A model is trained by performing the following task: Given a
particular context of an unknown word, predict the word. The model iterates over the corpus
and creates increasingly accurate representations by making predictions about word-context
combinations. This method is an example of supervised learning based on unlabeled data
(also known as self-supervised learning). A commonly used implementation from the tool
kit relies on the continuous bag of words architecture (CBOW). This architecture consists
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of a shallow neural network consisting of an input or embedding layer, an intermediate or
projection layer, and an output or softmax layer. The trained embedding layer is then used to
represent each word.

Perhaps the most popular implementation in the toolkit relies on the Skip-Gram method.
This method uses a slightly different training objective: Given a target word, the model
predicts its context words. The models can be trained using different training algorithms.
Traditionally, a softmax function is used to determine the prediction of the model; the function
results in a probability distribution over the entire model vocabulary. The word with the
highest probability is predicted. A more efficient alternative is negative sampling. This
method is loosely based on the following intuition: Instead of predicting probabilities for the
entire vocabulary, the model only estimates the probabilities of the target word and a small
sample of ‘negative’ (i.e. not context) words.

The Word2vec models, while being very popular, are by no means the only successful
implementations. Two other popular methods are Global Vector Representations (Glove
(Pennington et al., 2014)) and fasttext (Bojanowski et al., 2017). Likely reasons for the high
popularity of Word2vec are the accessibility of the toolkit as well as the large, downloadable
Skip-Gram model trained on the Googlenews corpus. These representations are often used as
input to neural networks trained on specific NLP tasks. Distributional representations used as
input for machine learning models are generally referred to as embedding representations or
embeddings.

Evaluation Typically, the quality of a distributional model is established by comparing
human judgments about words to information about the same words derived from the models.
Distributional models represent words in terms of their relations to other words; regardless
of the underlying method, words appearing in similar contexts should receive similar vector
representations and thus appear in similar areas in the distributional vector space. One
criterion on which word representations can be evaluated is how well closeness and distance
in the semantic space (usually measured by cosine similarity) reflect semantic similarity
and relatedness. This strategy of assessing model quality is usually referred to as intrinsic
evaluation.

An extensive intrinsic evaluation of different count-based and prediction-based models
has been conducted by Baroni et al. (2014) and Levy and Goldberg (2014). Baroni et al.
(2014) show that prediction-based models generally outperform count-based models when
compared to human similarity judgments. Levy and Goldberg (2014) show that count-based
models can reach equivalent performance when using a specific set of hyper-parameters.

Within NLP, distributional semantic models are mainly used as lexical representations
in larger (deep) learning systems trained to perform a particular task. For many NLP prob-
lems, words constitute a highly informative source of information. Pennington et al. (2014)
show that embedding representations as sole features lead to high performance for part-of-
speech-tagging and named-entity recognition. Schnabel et al. (2015) provide evidence that
performance on an intrinsic evaluation task does not necessarily predict performance on an
extrinsic task using the example of sentiment analysis. This is to be expected, the information
required for accurate sentiment prediction (mostly connotation) is not necessarily captured
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by standard, intrinsic evaluation tasks. The fact that embedding representations are partic-
ularly compatible with deep learning models trained on semantic tasks indicates that they
capture rich aspects of semantic information. The fact that performance on word similarity
tasks does not necessarily predict performance on a semantic task may be an indication that
embeddings capture aspects of semantic information that are not well reflected by overall
cosine similarities, but can be extracted by means of deep learning models.

Contextualized Models

More recently, large scale contextualized language models have replaced stable word embed-
ding representations in many NLP systems. Instead of using individual word vectors as input
for supervised deep learning systems, the latest systems fine-tune entire language models on
a particular task.

Language models can generally be understood as neural networks that ‘read’ massive
amounts of text and, by doing so, acquire information about different types of linguistic or
statistical regularities they observe in a corpus. In a simple, traditional set-up, a language
model is trained by predicting the next word in a sequence of words. More recent implemen-
tations of language models (Devlin et al., 2019; Liu et al., 2019) are based on the transformer
architecture and process text from left to right as well as from right to left. This is reflected in
the acronym Bert, which stands for Bidirectional Encoder Representations from Transformers
(Devlin et al., 2019). GPT2 (Radford et al., 2019), another commonly used language model,
is a one-directional transformer model.

Generally, transformer models consist of two mechanisms: Encoding (i.e. ‘reading’) text
and decoding (i.e. producing output). Transformers have emerged from the field of machine
translation, where they are trained to encode text in a source language and produce the same
text in a target language. A key component of transformer models are attention mechanisms
(Vaswani et al., 2017). The purpose of attention mechanisms is to allow the model to focus
on the relevant part of the input sequence for producing a particular component of the output
sequence.

When transformers are used for language modeling instead of translation, transforming
input text to target text is no longer necessary. Instead of transforming input text to output
text, the model is trained on a masked language modeling task. In this task, words in the input
sequence are masked (i.e. replaced by a [MASK] token). The model is trained on predicting
the correct word for the masked token. The attention mechanisms (called self-attention in the
context of an encoder-only model) allow the model to focus on words in the input sequence
that are important for predicting the masked token. In addition to masked token prediction,
the Bert model is also trained on predicting the next sentence. Bert’s sibling model Roberta
(Liu et al., 2019) is only trained on masked token prediction. Both models consist of several
stacked transformer networks. Bert and Roberta only use encoding layers. GPT2 only uses
decoder layers.

A main reason for the popularity of large scale contextualized language models is their
suitability for being fine-tuned on a particular NLP task. Fine-tuning is done by adding
a task-specific layer to the language model (e.g. a classification layer) and training it on
a supervised task. During the training process, weights in the entire language model are
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adjusted to ‘highlight’ the information that is helpful for the task the model is trained on.
Contextualized models are usually evaluated in terms of their performance on NLP tasks.

It is important to realize that contextualized models differ substantially from context-free
models with respect to how they represent words. Contextualized models represent words
as they appear in specific contexts. Thus, the model captures information on token level,
rather than on type level. In addition, contextualized models also capture representations for
character sequences of words (called subwords) and can thus generalize over words it has
never seen during training. Furthermore, contextualized models do not represent words as
single vectors, but represent words in context in several layers of the stacked transformer
network.

Nevertheless, both context-free and contextualized models rely on the same type of input
data; they learn representations based on word co-occurrences taken from large text corpora.
All they have access to are words in their linguistic context. Large transformer networks
consist of many more parameters than simple context-free models and may thus provide
richer information. Both model types, however, are founded on the Distributional Hypothesis.

1.3 Semantic Properties as a Proxy for Word Meaning

To investigate what aspects of semantic meaning distributional representations capture, it
is necessary to define word meaning in such a way that it can be used for a systematic and
informative analysis of distributional representations. Distributional representations have
been shown to yield rich, semantic information, but they are, by no means, perfect; the
best performing common sense reasoning systems still make mistakes humans would never
make (e.g. Staliūnaitė and Iacobacci, 2020). Based on such findings, it seems likely that
distributional data offer a partial reflection of semantic property information.

Word meaning is notoriously difficult to define. Different approaches emphasize certain
aspects of word meaning, while others are left out or remain under-specified. Dictionaries
capture word meaning in terms of definitions, but do not emphasize lexical relations; the
computational lexicon Princeton WordNet (Miller, 1995; Fellbaum, 2010) mainly relies on
lexical relations and inheritance, but under-specifies what aspects of meaning are inherited;
evaluation corpora for lexical representations contain human semantic similarity and relat-
edness judgements, but under-specify which aspects cause the similarity or relatedness. For
instance, it can be assumed that high semantic similarity indicates a certain degree of shared
meaning (e.g. between the words cat and dog). However, it is not made explicit what aspects
of meaning are shared.

Within psycholinguistics, approaches that emphasize the content of human conceptual
knowledge about words have been proposed (McRae et al., 2005; Vinson and Vigliocco,
2008; Devereux et al., 2014). Such approaches represent words in terms of semantic proper-
ties or features that express individual components of conceptual knowledge. Rather than
pre-defining properties, they have been collected from human participants by means of
feature-elicitation tasks. In such tasks, human participants are presented with concepts (e.g.
strawberry) and asked to list properties that come to mind (e.g. red, juicy, sweet). A major
purpose of such human-elicited representations of conceptual knowledge is studying the
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mechanisms behind fundamental cognitive phenomena, such as categorization, typicality, and
similarity.

Just like other approaches that aim to capture word meaning, semantic properties can
hardly provide a complete account of meaning. For example, it is impossible to determine
how many properties are necessary to define the meaning of a concept or how fine-grained the
properties should be. Nevertheless, they provide a means of analyzing individual components
of meaning on the basis of empirically collected pieces of information. Analyzing distribu-
tional representations in terms of such properties could yield insights into why distributional
representations do not align with human similarity judgments or why machine learning
systems could not learn to perform a certain common sense reasoning task. Furthermore,
understanding which semantic properties are well encoded in distributional representations
could yield a more fine-grained understanding of the Distributional Hypothesis.

1.3.1 Traditional Feature Norm Sets

Semantic properties of concepts have been collected in several datasets. This section provides
an overview of the most popular datasets.

McRae norms The semantic feature norm set collected by McRae et al. (2005) (usually
referred to as the ‘McRae norms’) consists of 541 basic level concepts expressing concrete,
living and non-living things. The norms have been collected from 725 participants (30 per
concept). The McRae norms have been used widely in computational experiments (see
Section 1.4).

CSLB norms The CSLB feature norms collected by Devereux et al. (2014, usually referred
to as the ‘McRae norms’) constitute, to the best of my knowledge, the largest feature norm
dataset. The concepts in the dataset consist of all concepts included in the McRae norms.
In addition, the concepts were extended with other concrete concepts. The new concepts
were selected in such a way that they are likely to share features with other concepts and thus
form categories. In total, the dataset consists of 866 concepts. Features were elicited from 30
participants per concept.

Object and Action Norms The dataset collected by Vigliocco et al. (2004) consists of 456
words. In contrast to the McRae and CSLB norms, the words encompass nouns as well as
verbs. The goal of the dataset was to collect features for object and action words to provide a
unified representation in a single feature space.

Binder norms Binder et al. (2016) suggests 65 broad semantic properties (referred to
as semantic dimensions) that can be (at least partly) justified neurologically. The datasets
consists of 535 words annotated with the 65 broad properties. In contrast to the other feature
norms sets, the information provided for each concept refers to an abstract semantic category
rather than specific feature values. Examples of the broad semantic properties are auditory,
color, and motion.
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In general, property norm sets can be thought of as a vector space of concepts whose
dimensions are defined by the total set of human-elicited features in the dataset. The values
of each dimension of a concept vector consist of the number of times a particular feature was
listed by a human participant. One major shortcoming of traditional feature norm sets is that
they do not contain explicit negative judgments. Participants tend to list highly salient features.
Consequently, the features listed for individual concepts are not necessarily exhaustive. The
fact that a feature has not been listed for a concept does not mean that it does not apply to
the concept. For example, the CSLB norms list the property has_two_legs for 16 out of
36 concepts also labeled as is_a_bird. 20 concepts labeled as is_a_bird are not annotated
with the property has_two_legs (e.g. duck, eagle, flamingo). If we were to take concepts not
annotated with a semantic property as negative examples of the property, these 20 concepts
would constitute false negative examples of the property has_two_legs. Methods that aim to
‘diagnose’ linguistic information in latent representations, however, require reliable negative
examples in addition to positive examples.

1.3.2 Augmented Feature Norm Sets

Feature norm sets have primarily been created to provide insights into psycholinguistic
phenomena. Other disciplines have also been attracted to studying conceptual representations
in terms of specific, empirically grounded semantic properties. Different feature norm sets
have been augmented with additional information in order to use them in other experimental
paradigms.

Quantified McRae Norms Herbelot and Vecchi (2016) study the phenomenon of quan-
tification from a formal semantic perspective. To study the phenomenon with respect to
empirically grounded conceptual knowledge (e.g. some cats are black is true, while all cats
are black is false), they annotated the McRae norms with quantifier information. Three
expert annotators (all first language speakers of English) labeled the property-concept pairs
from the McRae norms with the quantifiers ALL, MOST, SOME, FEW, and NO. Herbelot and
Vecchi (2016) highlight that the annotation task is not straight-forward and encompasses
various semantic phenomena that can trigger disagreement among trained annotators. The
resulting dataset contains explicit negative judgments. The dataset contains a substantial
number of features (all features in the McRae norms), but the number of negative examples
for individual properties is low. Out of 2524 features, 86 have concepts annotated with FEW

or NO. Among those 86 examples, the maximum number of negative examples is 4 (for the
property is_white).

Affordances Forbes et al. (2019) study the degree to which contextualized models can infer
properties and actions afforded by properties. As part of their dataset, they extend the McRae
dataset with additional concepts and a subset of human-verified negative judgments.

Discriminative attributes Krebs et al. (2018) suggest a challenging dataset consisting
of concepts and discriminative attributes. Given two semantically similar concepts and an
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attribute, the task is to determine whether the attribute can be used to distinguish the concepts.
For instance, in the case of the concepts airplane and helicoper and the property wings, the
property does indeed distinguish between the concepts. The dataset covers a wide variety
of propertes and concepts sampled from existing dataset (e.g. the McRae norms) and added
combinations of concepts and properties. Similar to the quantified McRae norms, the number
of examples per property remains low.

Distributional semantic models, in particular the models in the Word2vec toolkit, have
been shown to provide relatively good (albeit by no means perfect) indications of semantic
similarity and relatedness. We do not know, however, if they capture information about
specific semantic properties. If it is possible to distinguish distributional representations
of words with respect to a particular property (e.g. red: raspberry, blood, strawberry v.s.
blueberry, water, blackcurrant), this can indicate that the distributional representations
capture information about the property.

Testing property knowledge in distributional models can yield misleading insights if the
distribution of positive and negative examples does not follow a specific distribution. If the
positive and negative examples fall into radically different semantic categories (e.g. red:
strawberry, raspberry, cherry v.s. chair, table, desk) the representations can be distinguished
on the basis of a large variety of properties (e.g. is_fruit, does_grow, sweet, red). In such
a scenario, it is highly likely that the representations will be distinguishable, as models
are known to represent general semantic (dis)similarity. If a the representations can be
distinguished successfully, it is not clear whether this is due to the fact that they encode
information about the target property (e.g. red). This risk can be mitigated by means of a
controlled distribution of positive and negative examples: positive examples should only
be distinguishable from negative examples on the basis of the target property. The two
augmented datasets introduced in this section contain information about negative examples of
properties. However, the datasets have not been designed to pose a particular challenge to
distributional representations.

1.4 Diagnosing Semantic Properties in Distributional Representations

In this section, I review different approaches that have yielded insights about semantic
properties in distributional models. Even though model interpretability has only gained
popularity in recent years (see Belinkov and Glass, 2019), various earlier approaches have
attempted to analyze the semantic content of embedding representations. The Symbol-
Grounding Debate (De Vega et al., 2008) in particular, has triggered several studies that aim
to investigate how much semantic information distributional models encode (e.g. Glenberg
and Robertson, 2000; Andrews et al., 2009; Riordan and Jones, 2011).

I consider evidence from traditional, intrinsic evaluation methods for lexical representa-
tions (Section 1.4.1), approaches that augment distributional representations with information
from other modalities (Section 1.4.2) and approaches that aim to learn mapping functions be-
tween human-elicited and distributional spaces (Section 1.4.3). I then move to approaches that
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have mainly emerged from the field of model interpretability, namely diagnostic classification
(Section 1.4.4) and behavioral probing tasks (Section 1.4.5).

1.4.1 Similarity, Relatedness, and Analogy

Similar words appear in similar linguistic contexts and should thus receive similar vector
representations. Measuring the degree to which similarity between word vectors (measured by
cosine distance) corresponds to human judgments about semantic similarity and relatedness
is a core component of assessing the quality of distributional representations (e.g. Rubenstein
and Goodenough, 1965; Hill et al., 2015; Bruni et al., 2014; Finkelstein et al., 2001). Context-
free distributional models have been shown to correspond, at least to some degree, to human
judgments (Baroni et al., 2014; Levy and Goldberg, 2014).

Semantic similarity can be interpreted as partial overlap of semantic properties. Thus,
accurate reflection of similarity between two word representations (e.g. strawberry and
raspberry) can give first indications that the representations may reflect semantic properties.
However, a general notion of similarity (reflected by a cosine distance between 1 and 0) does
not indicate which properties overlap. Partially accurate reflections of similarity do not allow
for fine-grained insights about the presence or absence of certain aspects of information.

A second popular evaluation method for distributional representations are analogy tasks.
Given a word pair connected by a specific semantic relation (e.g. man and woman), the
task is to predict the missing component of a second pair (e.g. predict queen given king).
Such analogy riddles can be solved by means of vector subtraction and addition: king - man
+ woman = queen. The prediction-based distributional model suggested by Mikolov et al.
(2013b) has been shown to perform particularly well on such tasks. Count-based distributional
models have also been shown to allow for analogical reasoning (Levy et al., 2015). This
ability seems to indicate that distributional representations can capture individual components
of meaning, such as maleness, femaleness or being royal.

Analogy tasks as well as analogy vector calculations have received substantial criticism.
Linzen (2016) points out fundamental problems including the observation that the target
vector (e.g. queen) in the analogy task can often be found by simply taking the vector closest to
the source (e.g. king). Nissim et al. (2020) point out that commonly used analogy calculation
methods exclude all of the three given words from the possible predictions for the missing
analogy component. This limitation implies that the model has a lower chance of making a
wrong prediction. In combination, these two limitations cast doubt on the assumption that
simple vector addition and subtraction can be used to reason over specific semantic properties
involved in analogy riddles.

Similarity, relatedness, and analogy are traditionally used to assess the intrinsic quality of
context-free embeddings. Contextualized models, in contrast, tend to be evaluated by means
of their performance on downstream tasks. One challenge for evaluating contextualized
models with respect to the quality of their lexical knowledge is the fact that they represent
words as tokens used in particular contexts. Chronis and Erk (2020) design an approach to
derive type rather than token representations and show that vectors extracted from different
layers of Bert perform well on standard similarity and relatedness tasks.
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1.4.2 Evidence from Integrating different Modalities

As distributional models only have access to text, it can be expected that co-occurrence
patterns contain little information about information that is typically perceived through other
modalities (e.g. visual attributes, such as the color or shape of objects). If this is indeed the
case, models that add visual information to the information encoded in text only should yield
more accurate representations.

A number of early studies explore the difference in information represented by models
based on text and human-elicited features. They show that representations that combined
human-elicited features with distributional information tend to be more accurate than text-
only or feature-only representations. The studies show that the two sources of knowledge
are indeed complementary, but also encode overlapping information (Andrews et al., 2009;
Silberer and Lapata, 2012; Riordan and Jones, 2011). Other approaches that directly integrate
visual information with distributional models (Roller and Schulte im Walde, 2013; Silberer
et al., 2013; Lazaridou et al., 2014) show similar patterns. Possible areas of information
encoded in distributional data (and partly overlapping with visual data) are encyclopedic
information, and function- and action-related information. Visual information, in contrast,
does not seem to be well-encoded by distributional representations. A limitation of such
combined approaches is that they do not test fine-grained reasoning abilities and are usually
limited to qualitative evaluations or evaluations in terms of overall correlations with feature
norm sets.

1.4.3 Space Alignment

Traditional feature norm datasets can be viewed as a human-created semantic space; concepts
are represented by vectors whose dimensions correspond to semantic properties. A common
approach used to determine whether distributional representations capture semantic features
is to test whether it is possible to find a mapping between the two spaces. If distributional
semantic models capture semantic information that corresponds (at least partially) to semantic
features, the underlying structures of the spaces should be similar enough to align them.

Context-free models Several studies indicate that mappings from a feature norm space to
a context-free distributional model space can, at least partially, be learned. Fagarasan et al.
(2015) and Derby et al. (2019) experiment with different mapping functions and evaluate their
approach by means of a feature prediction task: How well can the mapping predict the most
important features of a word given its distributional representation? Both approaches indicate
that it is possible to predict a high number of accurate features from the McRae norms (in
the case of Fagarasan et al., 2015) and the CSLB norms (in the case of Derby et al., 2019).
While not all predicted features necessarily correspond to features listed for the concept in the
norms, the predictions are still plausible. Both studies conclude that embedding spaces are
likely to capture semantic property knowledge, but might differ from human-elicited feature
norm spaces in terms of what information they emphasize.

To gain deeper insights into the strengths and weaknesses of distributional representations,
Utsumi (2020) conducted a mapping experiment using the neurobiologically motivated feature
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norm dataset collected by Binder et al. (2016). The mapping is evaluated by means of testing
how well the predicted feature vector of a word based on the distributional embedding space
corresponds to the vector of the word in the feature norm dataset. The results indicate that
the distributional representations provide good reflections of abstract information, but lack
perceptual and spatio-temporal information.

While these mapping studies yield initial insights about a partial correspondence be-
tween the structure of human-elicited feature spaces and distributional spaces, they share
the following limitations: Systematic, quantitative evaluation is limited to the features listed
in the respective feature norm dataset. This means that the emphasis is almost exclusively
placed on salient features. Furthermore, the experiments do not provide information about
negative examples; the datasets and experimental set-ups do not allow for a comparsion to
concepts that do not have a feature, as this information is not included in the feature norm
sets. This limitation is particularly relevant for the study presented by Utsumi (2020), as
the neurobiologically motivated norms consist of particularly broad features (e.g. color) and
purely reflect whether a feature is relevant for a concept, but not whether it has a positive or
negative association with it.

The lack of negative examples is addressed in a mapping study by Herbelot and Vecchi
(2015). The study uses the McRae norms annotated with quanifier information and shows that
the distributional space captures set-theoretic notions (e.g. all tricyles have three wheels, but
only some are used for transportation). This approach indicates that, at least to some degree,
the distributional vectors capture fine-grained information and may allow for fine-grained
distinctions. However, it is unclear to what extent the results are caused by property-specific
information or other correlations; did the model find information about the fact only some
tricycles are used for transportation, or is tricycle simply dissimilar from other concepts of
which most or all instances are used for transportation?

Contextualized models Some initial attempts have been made to establish to what extent
pre-trained contextualized language models capture semantic information that can be mapped
to human-elicited feature spaces. In contrast to context-free embeddings, contextualized
models do not represent words by single vectors. Rather, they capture words as they appear in
different contexts in terms of sub-words. Thus, building a vector space from a contextualized
model entails a number of choices: How are word representations derived from the model?
Which internal layers (or combination of layers) are used to represent the word?

Turton et al. (2020) show that a mapping can be learned between the Binder features
and a space consisting of contextualized representations. To derive word representations
from the contextualized model, sentences containing the target word are selected randomly.
For each sentence, the representation of the target word is extracted from each layer. The
representations of the target words from all sentences are averaged. The results indicate
differences between the layers; overall, higher layers enable better mappings. The study
indicates that a partial alignment between representations derived from contextual models
and the Binder norm space can be achieved. However, it suffers from the same limitations as
studies on context-free embeddings.
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Abdou et al. (2021) focus on the representation of color information in contextualized
models. They test to what degree a three-dimensional color space defined by lightness and
two hue axes (position between red and green, and blue and yellow) can be mapped onto
representations of color words derived from contextualized models. The results indicate
at last a partial alignment can be achieved. Warm colors yield a better alignment with
the contextualized model representations than cold colors. The study speculates that a
possible reason for this finding could be that warmer colors feature more prominently in the
environment (compared to cooler colors that often act as backgrounds) and therefore featured
more prominently in communication. While the results indicate that there is at least partial
structural correspondence between the spaces, they do not provide insights into whether
color information is captured for specific concepts and whether it could be used to make
fine-grained distinctions.

1.4.4 Diagnostic Classification

With the rise of end-to-end deep learning models in NLP, researchers have started to place
increasingly more focus on model interpretability. If models take text as input and produce
more or less accurate semantic interpretations as output, does this mean that the models
capture aspects of linguistic knowledge? One of the early methodological frameworks for
answering this question is diagnostic classification (Hupkes et al., 2018; Belinkov and Glass,
2019). The fundamental idea behind this approach is the following: If a latent representation
(usually a layer extracted from a neural network) carries a particular piece of information,
a simple classifier should learn to identify a particular piece of information if trained on a
(usually relatively small) set of examples. For instance, Shi et al. (2016) used this approach
to investigate whether the hidden layers of machine translation models capture different
syntactic properties. The same approach has also been used to examine the content of context-
free vector representations with respect to general linguistic properties (Yaghoobzadeh and
Schütze, 2016), word senses (Yaghoobzadeh and Schütze, 2016) and semantic properties
(Rubinstein et al., 2015).

Context-free models Diagnostic experiments on context free, distributional vectors have
yielded the following insights: Rubinstein et al. (2015) conducted diagnostic classification
and regression experiments using existing off-the-shelf distributional models. The models are
assessed using positive and negative examples of properties extracted from the McRae norms.
The results show that properties that represent a taxonomic category (such as is_bird, is_-
fruit, is_clothing) yield comparatively high performance, while attributive properties (mostly
perceptual properties such as colors and shapes) yield considerably lower performance. These
tendencies hold across all four of their distributional models and across both tasks.

Diagnostic classification is particularly appealing, as it allows for targeting individual
properties and in a relatively simple set-up. In contrast, learning mappings between feature
and embedding spaces always relies on the structure of the entire space, and thus makes it
more difficult to draw conclusions about property-specific information in embeddings.

Diagnostic classification does, however, have a number of limitations. Most importantly,
it is difficult to interpret classifier performance. Perfect or close to perfect scores as well as
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scores below chance level provide clear signals. However, it is unclear what scores in between
these extremes mean (Hewitt and Liang, 2019; Belinkov, 2021). Connected to this problem
is the fact that classifiers trained on randomly initialized embeddings can perform above
chance level and even yield relatively high performance (Zhang and Bowman, 2018). This
shortcoming can be addressed by using strong baselines; Hewitt and Liang (2019) suggest
the use of a control task against which classifier performance can be compared. A control
task should indicate how highly a classifier can perform without having access to the target
information.

Contextualized models Diagnostic classification has been used to investigate a number of
linguistic features in contextualized models (e.g. Jawahar et al., 2019). However, there are, to
the best of my knowledge, no existing studies that use diagnostic classification to determine
if layers of contextualized models capture specific semantic features. A possible reason
for this lack of experiments could lie in the difficulty to interpret diagnostic experiments
and their sensitivity to noise. Extracting lexical representations from contextualized models
encompasses a number of choices that may introduce artifacts and cause misleading results.

1.4.5 Behavioral Experiments

Instead of studying the distributional representations directly, it is possible to study the behav-
ior of embedding-based systems when performing a semantic task. In contrast to standard
NLP tasks, such probing or challenge tasks have specifically been designed to target (or probe)
specific aspects of linguistic information. Challenge datasets could be seen as a type of rigor-
ous evaluation that aims to provide general insights about the specific linguistic abilities of a
model (Lehmann et al., 1996). With increasing interest in understanding the inner-workings
of deep learning models, such tasks have regained popularity in the field of interpretability
(Belinkov and Glass, 2019). Challenge datasets can consist of specifically created or selected
evaluation instances representative of a linguistic phenomenon. Alternatively, they can be
created automatically by means of templates. For instance, Lake and Baroni (2018) created
an artificial dataset to study the abilities of recurrent neural networks to generalize over the
systematicity of compositional expressions.

Context-free models Several tasks have been designed to understand whether context
free embedding representations can capture specific semantic information. These tasks are
usually limited to using cosine distance between vectors to study specific aspects of semantic
similarity or relatedness with respect to a specific semantic phenomenon.

Bruni et al. (2012) present an evaluation of text-based and image-based embedding models
with a specific focus on their abilities to represent the colors of objects and distinguish between
literal and metaphorical uses of color terms. Both tasks are evaluated on the basis of cosine
similarity. For the object task, the cosine similarity between a noun (e.g. crow) and eleven
color terms was measured and the rank of the correct term (e.g. black) recorded. This use
of specifically selected evaluation data reveals general tendencies about visual information
that would not be apparent from a standard test set. Visual models performed less well on
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standard intrinsic evaluation sets, but outperformed text-based models on the tasks requiring
visual information.

Challenge tasks have also been used to study information about afforded actions. Glenberg
and Robertson (2000) use representations from an LSA model to demonstrate that distri-
butional representations lack crucial information. In this task, a context-free distributional
model is used to select a realistic continuation of a scenario. For example, given the scenario
Marissa forgot to bring her pillow on her camping trip, the model is used to distinguish a
realistic from an unrealistic continuation: (a) As a substitute for her pillow, she filled up an
old sweater with leaves. (b) As a substitute for her pillow, she filled up an old sweater with
water. The task is approached as follows: The sentences in the task are represented by means
of averaging over the LSA vectors of each word. To determine which continuation of the
scenario is realistic (i.e. afforded), the authors determine the cosine similarity between the
scenario vector and the two continuation vectors. The continuation vector with the higher
cosine similarity to the scenario is chosen as the correct answer. The results indicate that
models can distinguish common and afforded from non-afforded situations, but are unable to
distinguish between uncommon and afforded situations from non-afforded situations.

Johns and Jones (2012) present a follow-up experiment in which they compare the
performance of a distributional model to a model consisting of distributional and feature norm
data on the same affordance task. Rather than using the entire sentence representation, they
only measure cosine similarities between the relevant words. The results of the distributional-
only model confirm the observations made by Glenberg and Robertson (2000). The combined
model, however, is able to achieve better performance on distinguishing uncommon but
afforded from non-afforded continuations.

Contextualized models Contextualized models have yielded particularly impressive perfor-
mance when being fine-tuned for a particular NLP task. Behavioral studies on contextualized
models aim to study their abilities from two perspectives: (1) One goal is to investigate what
kinds of linguistic regularities the pre-trained models have picked up without having been
fine-tuned on a particular task. (2) Another group of approaches fine-tunes models on a
particular probing task to determine what the model can learn when given training examples.

Cloze-tasks for pre-trained models A popular paradigm for the analysis of the knowledge
captured by pre-trained language models are cloze tasks. Cloze tasks are sentence completion
tasks that have originally been used as psycholinguistic tools that assess specific linguistic
abilities. Ettinger (2020) uses a suite of psycholinguistic cloze tasks to assess different
aspects of linguistic competence in pre-trained Bert models (e.g. pragmatic inferencing and
understanding negation).

Sentence completion (or cloze) tasks have also been used to assess the knowledge pre-
trained language models have about specific semantic properties. Weir et al. (2020) construct
cloze sentences on the basis of the CSLB such as "A __ has fur." to test what they call ‘human
tacit assumptions’. Specifically, they test how well models can predict concepts given an
increasing number of properties in the cloze sentence (e.g. "A __ has fur." eventually becomes
"A __ has fur, is big, has claws, has teeth, is an animal, eats, is brown, and lives in woods." and
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should be filled with bear). Their results provide first indications that Bert and Roberta can
indeed infer the correct concepts given a combination of indicative properties. These results
indicate that the models capture information about properties and concepts. However, it does
not provide fine-grained insights about what properties are captured and what information is
lacking.

Cloze tasks have been used to investigate the phenomenon known as the reporting bias.
This bias describes the phenomenon that linguistic corpora tend to represent a distorted
picture of the world, as texts (in particular new texts) tend to over-emphasize unusual and
generally unexpected events (e.g. plane crashes) and under-emphasize ordinary events such as
an ordinary plane journey (Gordon and Van Durme, 2013). Shwartz and Choi (2020) revisit
the corpus experiments performed by Gordon and Van Durme (2013) and test the ability of
language models to reflect information about people and actions. They find that language
models can, to some degree, represent implied knowledge, but also tend to over-represent
rare and sensational events.

Following the same intuition, Paik et al. (2021) hypothesize that people tend to omit
obvious, highly implied information and predict that this type of information will thus not be
captured by language models. They investigate color representation by means of a sentence
completion task (e.g. "Most bananas are [MASK].") and observe that language models are
better at predicting colors of concepts whose instances can have a wide variety of colors.
The finding is supported by a corpus analysis which shows that color information about
concepts associated with a single color is least well represented. A complementary study
was conducted by Apidianaki and Soler (2021), who target highly implied information (e.g.
red-strawberry). They construct sentences reflecting quantifier information on the basis of
the quantified McRae norms and find that highly implied properties are not well represented.

A limitation of the cloze tasks introduced above is that they only focus on positive
examples of properties. They lack a comparison to negative examples of properties. On the
basis of these results, it is hardly possible to tell whether language models can consistently
distinguish between positive and (challenging) negative examples of a property.

Fine-tuning experiments While cloze-tasks can give general indications about the behavior
of a contextualized language model, they do not necessarily provide an accurate reflection
of the model’s potential. During pre-training, all the model has to do is predicting masked
tokens (and possibly next sentences). The models do not have to engage in complex reasoning.
It is most likely unrealistic to expect high performance on a cloze task that requires such
reasoning. It is, however, possible that the model captures enough information that could be
useful when specifically trained on a task that requires reasoning.

Furthermore, sentence completion tasks usually allow for a variety of appropriate comple-
tions. The fact that a pre-trained model does not fill in the correct word does not necessarily
mean that it does not have information about the semantic property in question. It merely
shows that a different word received a higher probability in the masked language modeling
task. The model might, however, still have the potential to learn property-concept associations
when shown helpful examples in a fine-tuning set-up.

The Winograd Schema challenge (Levesque et al., 2012) constitutes a particularly illus-
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trative example of what can be gained by means of fine-tuning. The challenge is supposed
to constitute a particularly difficult common sense reasoning task. It consists of pronoun-
resolution problems that require complex reasoning (Example 7):

(7) The trophy doesn’t fit into the brown suitcase because it is too large. What is to
large? (Possible answers: the trophy, the suitcase)

Pre-trained language models can be used to approach this task by means of masked token
prediction, similar to the cloze-tasks presented above: The ambiguous pronoun it is masked
(i.e. replaced by a [MASK] token) and the probabilities of the two candidate words (trophy,
suitcase) for the masked slot are compared. The candidate with the higher probability is
predicted as the correct referent. The same task can be reframed as a classification problem
that then enables fine-tuning on a training dataset: Given the Winograd sentence filled with
the referent candidates, predict which candidate is correct. Kocijan et al. (2019) show that
fine-tuning the models on a Winograd training set can increase the performance substantially:
Their fine-tuned Bert model performs about 10 accuracy points higher than the pre-trained
model (0.714 compared to 0.619).

Fine-tuning a pretrained language model can have a similar motivation as diagnostic
classification: If the language model captures relevant semantic information, it can learn
to access this information and reason over it when given training examples. In contrast to
diagnostic classification, the information is not learned based on a single vector (representing a
single layer of a model), but based on the entire model with all its parameters. The parameters
of the model itself are adapted during the fine-tuning process (while a vector in a diagnostic
classification experiment remains frozen). The high performance gain on the Winograd
Schema Challenge could be seen as an indication that the model can learn to foreground the
relevant information and reason over it.

The intuition of using fine-tuning as a diagnostic task has been used to investigate
the abilities of contextualized models to represent different aspects of semantic property
knowledge. Forbes et al. (2019) experiment with concepts (representing objects), properties,
and affordances. They fine-tune models on three tasks: Given an object, predict its properties,
given an object, predict its affordances and, requiring rather complex reasoning, given an
affordance, predict properties compatible with it. The results show that predicting affordances
from objects can be learned successfully; models even achieve close to human performance.
Predicting properties from objects works to some degree, while predicting properties from
affordances cannot be achieved. The authors conclude that the models are unlikely to have
seen information (i.e. indicative co-occurrences) that allow them to infer properties (e.g. being
round) from affordances (i.e. rolling), as the two are unlikely to occur together. The models
are too limited to make complex inferences via reasoning.

While fine-tuning can be seen as a promising diagnostic tool, it also has limitations. The
fine-tuning process itself runs risk of introducing information that is unrelated to the task at
hand, but happens to correlate with the distribution of correct labels. Sakaguchi et al. (2020)
see reports of high performance of above 90% accuracy on the original Winograd Schema
Challenge as a reason to question whether models can indeed perform the type of complex
reasoning required to solve the task. They argue that the high performance is likely to be
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caused by biases in the data, such as a high degree of lexical association between the trigger
property and one of the candidate concepts rather than. They also consider other dataset-
specific biases pointed out by Trichelair et al. (2018). Sakaguchi et al. (2020) introduce a
new Winograd dataset called Winogrande. This dataset has been constructed with the goal to
reduce the chance of such biases.

1.4.6 Corpus Extraction

The information captured by any language model trained on text depends on what information
is expressed in the underlying corpus. If certain semantic information is not present in the
corpus, it cannot be reflected by a language model. Corpus analysis can thus provide insights
into the potential of language models.

Before the rise of prediction-based models, several approaches have attempted to extract
semantic information from corpora in a targeted way, for instance by means of using patterns.
Baroni et al. (2010) and Baroni and Lenci (2010) present a framework and model for extracting
semantic property information from corpora and use it to build a vector space model. The
model performs well on various semantic tasks. In particular, the model is well equipped for
tasks that require information about actions and situations.

A different motivation of corpus analysis is to verify whether insights from diagnostic
experiments are plausible. Paik et al. (2021) use corpus analysis to verify that the reporting
bias is indeed reflected in corpus data. They find evidence of the reporting bias in three
corpora and find that the same bias seems to be reflected in contextualized models (not
necessarily trained on the same corpora).

Abdou et al. (2021) complement their analysis of color in contextualized models with
corpus analysis. They try to identify linguistic factors in corpora that determine whether
specific color information tends to be encoded in contextualized language models. They find
that frequent collocations of colors in non-literal senses (e.g. red army) seems to correlate
with low quality color representation by the language model. High diversity of syntactic roles,
in contrast, seems to correlate with good color representation.

1.5 Taking Stock

In this section, I provide a summary of what is currently known about semantic property
information in different word representations derived from distributional data. Semantic
property information in distributional models has been investigated by means of a number of
different methodological approaches. Observations range from direct extraction from corpus
data to context free embedding representations and contemporary work on contextualized
language models. Based on the work discussed in the previous section, I identify a number of
general tendencies that seem to emerge, as well as limitations of existing approaches.

General tendencies All approaches discussed above indicate that property information
is, to some degree, reflected by different distributional representations. Early approaches
that investigate context-free embeddings mainly seem to find that perceptual information (in
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particular color information) is not well represented by embeddings. This insight has been
gained in early diagnostic classification experiments (Rubinstein et al., 2015), targeted evalu-
ations (Bruni et al., 2012) as well as experiments that show that distributional representations
can be improved considerably by means of augmenting them with perceptual information
(e.g. Silberer et al., 2013; Lazaridou et al., 2014; Roller and Schulte im Walde, 2013).

Contemporary work on color representation in contextualized models shows first in-
dications that certain aspects of color information can indeed be inferred on the basis of
distributional co-occurrence patterns (Abdou et al., 2021; Paik et al., 2021; Apidianaki and
Soler, 2021). A possible factor in determining whether color information is represented or not
could be the reporting bias (Paik et al., 2021). Apidianaki and Soler (2021) provide first indi-
cations that highly implied information about color may remain absent from contextualized
models after all.

A second tendency arising from multiple observations concerns the representation of
action- and function-related properties. Rubinstein et al. (2015) show that action-related prop-
erties (as well as some aspects of encyclopedic information) yield relatively high performance
in diagnostic classification experiments on context free embeddings. Results by Glenberg
and Robertson (2000) and Johns and Jones (2012) indicate that context free distributional
representations provide relatively accurate representations of afforded and usually performed
actions. Forbes et al. (2019) provides evidence that contextualized models can reflect afforded
actions successfully. Baroni et al. (2010) and Baroni and Lenci (2010) show that action- and
function-related information is successfully represented by a model that relies on targeted
corpus extraction.

A third aspect concerns the tendency that taxonomic information seems to be represented
well by context-free embeddings based on the diagnostic experiments performed by Rubinstein
et al. (2015). A possible explanation for this could be that textual data seem to be good at
capturing hyponymy relations (Hearst, 1992). This tendency is in line with the hypothesis that
distributional data could be the main source of abstract information concerning taxonomic
categories proposed by Lenci (2008).

Limitations A central limitation of most existing approaches is that they tend to emphasize
positive examples of properties and disregard the role of negative examples. In other words,
focus is placed on investigating whether highly salient properties of concepts are reflected
by distributional models. However, it is not investigated whether distributional representa-
tions can distinguish positive examples from negative examples of a particular property. In
particular, it is not known whether distributional models can distinguish positive examples
from highly similar and thus challenging negative examples. Is the information captured by
distributional models fine-grained enough to determine that seagulls and penguins are birds,
but penguins differ from seagulls with respect to their ability to fly? Some approaches employ
datasets that contain negative examples (e.g. Herbelot and Vecchi, 2015; Forbes et al., 2019).
However, they do not select positive and negative examples in such a way that they pose a
particular challenge to the distributional models. Based on existing research, it cannot be said
with certainty that the models capture property-specific information. High performance might
simply be due to their (more or less) accurate reflection of general semantic similarity and
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relatedness.
A second limitation of existing approaches is that they pay relatively little attention to the

explanatory power of their experiments. Some studies try to arrive at general tendencies (e.g.
Rubinstein et al., 2015; Glenberg and Robertson, 2000), but most results remain limited to
showing that the language models capture semantic properties to some degree. In particular,
existing studies pay relatively little attention to what the words in their datasets could reveal
about general tendencies that could explain why certain aspects of conceptual knowledge are
represented, while others remain absent. Contemporary studies that investigate the reporting
bias (Paik et al., 2021) and highly implied information (Apidianaki and Soler, 2021) take the
first steps towards identifying such tendencies.

1.6 Contributions

In this thesis, I aim to study semantic property information in distributional representations
on the basis of a methodologically informed diagnostic dataset. I address the methodological
limitations outlined above by specifically focusing on a dataset that challenges distributional
models; the dataset should ensure that models can only succeed on diagnostic tasks if they
can indeed identify information about a specific semantic property rather than by relying on
other aspects of information, such as general similarity. The data used for this investigation
should be indicative of possible underlying mechanisms that determine what type of semantic
information distributional data can reflect. This thesis proposes a theoretical model of property
expression in distributional data and a methodologically informed dataset design. I collect
a diagnostic dataset that aims to fulfil the methodological requirements and enables testing
hypotheses derived from the model.

The resulting diagnostic dataset is used to investigate the information captured by dis-
tributional models in the following ways: Firstly, I use the diagnostic dataset for diagnostic
classification experiments on context-free embedding representations and verify the outcome
by means of corpus analysis. Secondly, I use the diagnostic dataset to study contextualized
models in two behavioral tasks.

1.7 Summary

This chapter presented an overview of the core concepts of this thesis and provided an
overview of related research. Firstly, the chapter provided an outline of the most important
assumptions underlying the Distributional Hypothesis and different distributional semantic
models. Secondly, the chapter motivated the use of semantic properties for the investigation of
distributional word representations and illustrated the limitations of existing property datasets
when used in experimental set-ups that aim to ‘diagnose’ semantic properties. Thirdly, the
chapter provided an overview of existing research on semantic property information captured
by context-free and contextualized models and summarized the main findings and limitations.
Finally, the chapter provided a brief outline of the most important contributions of this thesis.
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2. Two use-cases

2.1 Introduction

In this chapter, I introduce two applications of embedding representations to the study of
concepts. The use-cases illustrate the limitations of distributional models and the need for a
better understanding of what aspects of meaning distributional representations reflect. The
chapter summarizes two studies that explore the suitability of using context-free embedding
representations for the study of specific concepts from a usage-based perspective. In partic-
ular, both studies investigate the degree to which distributional models could give accurate
reflections of semantic variation and change. Both studies arose from projects that were
initially not part of the research carried out for this thesis. As such, they do not focus on the
central research question of this thesis.

The motivation behind both approaches is that embedding representations can provide
usage-based accounts of word meaning and may reflect subtleties of meaning that are not
recorded in traditional lexical resources. Both studies aim to use embedding representations
for studying semantic variation and change on the basis of corpus data. Put simply, a corpus
can be represented as a distributional semantic space. Two corpora can be compared against
one another by comparing the structure of their semantic spaces. Semantic shifts should be
reflected by changes in the position of individual vectors. Such shifts can be observed by
means of comparing vector distances across the semantic spaces.

While using embedding spaces for usage-based enquiries about concepts is appealing,
it is, at this point, not trivial to draw sound conclusions from such comparisons between
embedding models representative of different corpora. Embedding models, in particular when
trained on relatively small corpora, have been shown to be sensitive to noise and factors in the
data that lead to differences between semantic spaces (Hellrich and Hahn, 2016a; Dubossarsky
et al., 2017). These differences pose a risk for drawing misleading conclusions, as they are
not indicative of actual semantic change. Studies that focus on shifts between specific corpora
(e.g. representative of a genre, a historic period, or the writing of a specific author) tend to be
comparatively small. Thus, when comparing representations from two semantic spaces to
detect semantic change, there is a considerable risk of drawing conclusions based on noise,
rather than meaningful change in usage.

The two studies summarized in this chapter address the challenges involved in drawing
conclusions from comparatively small distributional models. These challenges are outlined
in more detail in Section 2.2. The first study presents an investigation of conceptual change
in the concept of RACISM over the course of the 20th century in the Corpus of Historical
American English (COHA). The goal of the study is to distinguish actual semantic change
from noise by means of a number of methodological checks. The summary of the study
(Section 2.3) is based on the following publication:
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Pia Sommerauer and Antske Fokkens. 2019. Conceptual change and distributional
semantic models: an exploratory study on pitfalls and possibilities. In Proceedings of
the 1st International Workshop on Computational Approaches to Historical Language
Change, pages 223–233, Florence, Italy. Association for Computational Linguistics

The second study presents an evaluation of embedding representations created from small
data for the study of philosophical concepts. The study was conducted in collaboration with a
philosopher (first author of the publication), who designed a philosophical ground truth in
the form of a conceptual network. We use the conceptual network to evaluate the quality of
embeddings created by means of different methods specifically designed to represent words
on the basis of comparatively few occurrences in a corpus. The results show that current
methods are not yet good enough to enable fine-grained representations of philosophical
concepts that could support the detection of subtle conceptual shifts in philosophical writing.
This illustrates the need for a deeper understanding of the interaction between corpus data and
embedding representations. The summary of study 2 (Section 2.4) is based on the following
publication:

Yvette Oortwijn, Jelke Bloem, Pia Sommerauer, Francois Meyer, Wei Zhou, and Antske
Fokkens. 2021. Challenging distributional models with a conceptual network of philo-
sophical terms. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
2511–2522, Online. Association for Computational Linguistics

2.2 Methodological Challenges of Studying Semantic Shifts

In this section, I provide a brief overview of the most important methodological problems of
applying distributional semantic representations to the study of semantic variation and change.
Both studies introduced in this chapter address the difficulty of distinguishing change from
accidental instabilities and aim to estimating the quality and reliability of existing methods
used for studying conceptual shifts, in particular with respect to comparing small corpora.

Going beyond individual words Existing studies on semantic change tend to focus on
highly apparent and well-known shifts in individual words that have been documented in
lexical resources (e.g. the changes in the meaning of the word gay from a synonym of happy
to homosexual). Studying changes in more complex conceptual systems (e.g. RACISM or
complex networks of philosophical terms) is less trivial. Betti and van den Berg (2014)
propose the use of conceptual models to study concept change in a clearly defined and
somewhat formalized way. This notion is rarely treated explicitly in applications of embedding
models that aim to show conceptual shifts.

Evaluation Studies that only consider the most extreme changes (Hamilton et al., 2016a,
e.g.) cannot provide accurate indications of model quality for less frequent words and subtle
changes. van Aggelen et al. (2019) show that diachronic models perform considerably less
well when being evaluated on a more challenging evaluation set for semantic change based on
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a thesaurus. Subtle und not well documented changes, however, are of particular interest for
usage-based approaches of semantic change, as such approaches have the potential of going
beyond known and already documented changes. It is difficult to estimate the quality and
reliability of distributional models for these types of studies, in particular when considering
their potential to pick up noise rather than meaningful signals.

Sensitivity to noise A number of studies warn about the reliability of distributional semantic
models for detecting change. Dubossarsky et al. (2017) illustrate that it is not known what
properties in the underlying corpora are emphasized by various models and that count-based
models in particular are sensitive to frequency effects. Hellrich and Hahn (2016a) point out
that predictive models trained on the same data return different nearest neighbors, because
they are influenced by random factors such as their initialization and the order in which
examples are processed. Antoniak and Mimno (2018) present an investigation of the extent to
which only small changes in the underlying corpus impact the resulting representations. They
show that the impact of the processing order increases when smaller corpora are used.

Small data Diachronic general purpose corpora, such as the Corpus of Historical American
English (Davies, 2002, COHA) introduced to the Computational Linguistics community by
Eger and Mehler (2016), are rather limited in size. Other datasets (e.g. Google n-grams are
larger, but suffer from biases (Pechenick et al., 2015) or are limited to specific genres (e.g.
Google n-grams fiction) (Michel et al., 2011; Dubossarsky et al., 2015). Approaches that use
embedding methods for the study of highly domain-specific data are limited to even smaller
datasets. Small data have been shown to be particularly sensitive to noise (Hellrich and Hahn,
2016a).

2.3 Study 1: Studying Conceptual Change with Embeddings

In this study, we explore methods to distinguish subtle semantic change from random noise
in diachronic comparisons of embedding spaces, as for instance proposed by Hamilton et al.
(2016b). We approach this challenge by means of an explicit conceptual model of the well-
studied, but complex concept of RACISM whose interpretation is known to have changed over
the course of the 20th century. In this section, I highlight the main components and most
important findings of the study1: I first present our explicit conceptual model that can be
used to derive specific expectations about semantic change (Section 2.3.1). I then present
the results of viewing apparent changes through a lens of critical methodological checks
(Section 2.3.2).

2.3.1 A Conceptual Model Approach

We follow Betti and van den Berg’s (2014) observation that change applies to conceptual
systems. Thus, we approach the concept of RACISM as a complex conceptual system, rather

1Passages of the summary are taken from the original publication and have been modified to fit into the larger
framework of this chapter.
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than focusing on individual words or synonyms along. We distinguish four classes of words
that can be relevant for studying conceptual change: (i) words referring to the core of the
concept, (ii) relevant subconcepts, (iii) instances of a core or subconcepts and (iv) words
referring to related concepts. We use this set-up to model the changes in the conceptual
system of RACISM that have occurred over the course of the 20th century.

Conceptual model Ideally, studies of specific conceptual systems should be carried out
in collaboration with domain experts. For this study, we relied on literature from various
disciplines within Social Science and Humanities to select relevant words and formulate
specific expectations about lexical shifts that can reflect conceptual change. We mainly
rely on Barker (1981), who identifies a shift from ‘old’ to ‘new’ racism. Race used to be
understood in biological terms related to visual attributes, particularly, skin color. Due to
social changes (triggered by the Nazi regime’s cruelties and the Civil Rights Movement),
biological interpretations were relinquished as explanations for prejudice and increasingly
replaced by cultural interpretations of differences between groups (Augoustinos and Every,
2007; Lentin, 2005; Morning, 2009; Omi, 2001; Wikan, 1999; Winant, 1998). We therefore
identify “Culture” and “Race” as the core concepts of “Racism” investigated through the
words race and culture as well as racial and cultural. The advantage of the adjectives is
that they have a lower degree of polysemy than the nouns. This shifting interpretation led
to different ways of defining and comparing social groups (subconcepts and instances) and
different justifications for racist ideologies (related concepts) summarized in Table 2.1 and
Table 2.2.

Expected changes We expect that words associated with old racism (subconcepts, instances,
and related concepts) will have moved further away (i.e. the similarity of their vectors has
decreased) from the core concepts. In contrast, words related to new racism should have
moved closer to the core concepts (i.e. the similarity between the vectors has increased) during
the 20th century. Furthermore, we expect that within the core concepts, the word cultural is
increasingly used to describe social groups, while the biologically connotated word racial is
avoided.

2.3.2 A Critical Consideration of Semantic Shifts

When using the approach proposed by Hamilton et al. (2016a) to study the conceptual change
of RACISM in COHA and the English Google N-Grams corpus, we found several shifts that
seemed to confirm our expectations. For example, the embeddings trained on the time slices
of the COHA corpus indicate that several word pairs indicative of a development to new
racism did indeed move closer together: religious-racial, different-cultural, national-cultural,
values-cultures.

To gain insights into the reliability of these results, we stress-tested them by means of two
strategies: We test whether the results hold across different model architectures trained on
the same data and we test whether the changes we observed can also be observed in control
words whose meaning is not expected to have changed.
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Conceptual system of old racism target words
Subconcepts ‘Race’ defined in terms

of visual attributes, first
and foremost skin color

skin color (not inves-
tigated as compound
nouns are not in the
model vocabularies)

Instances Groups defined in terms
of skin color

whites, blacks

Related concepts
Emphasis on a racial hi-
erarchy

superior, inferior

Biological justification
of hierarchical struc-
tures

genetics

Fear of intimacy be-
tween people of differ-
ent racial groups

marriage, relationship

Table 2.1: Conceptual system and representative words of old racism.

Conceptual system of new racism target words
Subconcepts ‘Race’ defined in terms

of cultural background
consisting of nationality,
language and religion

linguistic, national, reli-
gious

Instances Group labels of immi-
grants

immigrants, foreigners

Ethnic group labels Jews, Turks, Arabs

Related concepts
Emphasis on differ-
ences

different

Defense of seemingly
liberal values

values, attitudes, beliefs

The reason for differ-
ences lies in history
(rather than genetics)

historic

Table 2.2: Conceptual system and representative words of new racism.

Variations between models Shifts that are caused by actual change in usage should be
apparent from multiple different models (of different architectures and starting with different
random initializations). If the changes are stronger than seeming shifts caused by noise (i.e.
random factors or meaningless frequency effects), they should arise from different models.

We test whether a subset of our initial insights are reflected from models based on different
architectures. We use Hamilton et al.’s (2016a) count-based distributional semantic models,
which are provided with their paper: a PPMI (Positive Pointwise Mutual Information) model
and its high-density derivative SVD (Singular Value Decomposition). Though these models
were less successful in detecting change according to Hamilton et al. (2016a), they reflect the

29



CHAPTER 2. TWO USE-CASES

data directly without being influenced by their initialization or the order in which examples
are processed Hellrich and Hahn (2016b).

We observed that some changes are only significant in a single model (e.g. cultural-
different). For other word pairs, we observed contradictory results with significant changes in
opposite directions (e.g. cultural-inferior). The only conclusion that remained stable and is
thus supported by all models is the increasing similarity of cultures and values.

In addition to differences between models of different architectures, we also expected
differences between SGNS (skip-gram with negative sampling) models trained on the same
corpus but with different initializations. Models of this architecture create vector representa-
tions by iterating over the corpus and predicting whether a word-context pair is taken from the
corpus or not (see Chapter 1 for a detailed explanation). They start with randomly initialized
representations. Different initializations can thus lead to differences in vector representations
between models trained on the same data. We trained three SGNS models for the COHA
slices representative of the 1900s, 1950s and 1990s and compared the 25 nearest neighbors
of racial. When considering the differences in the top 25 nearest neighbors of racial in the
SGNS model trained on this comparatively small corpus, we found that as many as 14 out
of 25 nearest neighbors vary among the three models trained with three different random
initializations. In addition to overlaps between the neighbors, we also considered differences
in neighbor rank between different initialzations of the same models. The smallest time slice
of COHA with the smallest number of tokens showed the most extreme differences in rank
between neighbors, while larger time slices showed less extreme variations. This finding
highlights the instability of lexical neighborhoods for models trained on small corpora.

Control words Observations that hold across different models can still be a result of a bias
or artefact in the data. Likewise, differences between models can also be due to noise. As
an additional verification method, we test whether the changes we observed for concepts
related to RACISM can also be observed for words whose usage patterns should have remained
stable (henceforth control words). An illustration of the use of such control words is shown in
Figure 2.1. The graphs show the changes in cosine similarity between the word pairs races-
immigrants and races-foreigners (representative of the relation between race and socially
defined groups) as well as the control pair races-nurses. In this case, the use of the control
word calls the observations of change in the target word pairs into question, as the control pair
shows the same patterns as the target pairs. In addition, the control word may point towards a
broader semantic shift in the relation between the concepts RACE and PEOPLE. It should be
considered that in this case, it is unclear whether the change relates to the biological/social or
competition sense of the ambiguous word race. In the original study, several of the initial
observations could not withstand a comparison to control words.

2.3.3 Conclusion

The study illustrates the risk of drawing conclusions about semantic changes from the compar-
ison of embedding spaces. Based on our results, we proposed a range of recommendations for
studying variation and change by means of comparing word representations across embedding
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Figure 2.1: Changes in the cosine similarities between races and words representing social
groups.

spaces.Our results highlight the importance of using an explicit model of the expected se-
mantic change. Such en explicit model can be explored through multiple methods. Observed
changes can be tested through a comparison to control words. Furthermore, we stress the
value of comparing learning-based to count-based models, as they are sensitive to different
sources of potential noise. The use of control words can serve as an additional verification.
The study cannot, however, explain the different and partly contradictory tendencies revealed
by models based on the same data. This illustrates the need for a better understanding of how
different embedding models represent signals from distributional data.

2.4 Study 2: Evaluating Embeddings for Studying Philosophical
Concepts

Study 2 constitutes an evaluation of representing philosophical concepts with different distri-
butional semantic models specifically designed for small data. Philosophers often study how
different authors used highly specialized concepts or how a single concept developed within
the writing of a single author. Conclusions of such studies tend to be based on a selection
of texts, rather than an exhaustive corpus, as manual close reading of the entire material is
not feasible. Being able to represent and compare different collections of texts against one
another by means of distributional models could thus offer a valuable tool. However, such
collections of texts are comparatively small in the context of distributional models and thus
prone to representing artifacts rather than meaningful signals. The evaluation conducted in
this study highlights the shortcomings of distributional models for specific applications based
on small, domain-specific data; while some of the approaches specifically designed for small
data show promising tendencies, none of the methods yielded concept representations of
sufficient quality for studying philosophical concepts. In addition, the study highlights the
value of carefully constructed evaluation data created by domain experts.

In this section, I summarize the main insights obtained from the study. I briefly introduce
the philosophical ground truth and how we used it for evaluating semantic representations
(Section 2.4.1) and outline different approaches for representing words on the basis of small
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data (Section 2.4.2). I then present selected results that illustrate the weaknesses of and open
questions surrounding distributional representations (Section 2.4.3).

2.4.1 A philosophical Ground Truth

The philosophical texts under investigation in this study comprise the work of the philosopher
Willard V. O. Quine, which has been digitized and processed for computational use in the
QUINE corpus (Betti et al., 2020). Rather than investigating shifts within the corpus, we
evaluate the quality of distributional representations created on the basis of the entire corpus
by means of a conceptual network that represents central concepts and their conceptual
relations in the work of Quine.

The network of concepts is based on the most important terminology defined in Quine’s
text Word and Object. The philosophical expert on the team categorized the terms into five
clusters or as terms that express relations between the five clusters. Two terms in the same
cluster are seen as semantically similar to each other; terms expressing relations between
clusters are seen as semantically related to the terms in the respective clusters (but not
necessarily similar). The entire network contains 74 clustered terms of which 43 also express
relations. The clusters of philosophical terms can thus be used for similarity-based tasks,
automatic clustering and classification.

An advantage of this type of highly technical ground truth is that it can be created with a
high degree of agreement between experts; two independent experts reached full consensus
on the accuracy of the network. While it is possible that other experts may disagree, it is
remarkable that the space for interpretation left by highly technical and specialized terms
is very small. By comparison, agreement reached on commonly used evaluation data for
distributional models is not particularly high (e.g. Spearman Rho correlation of 0.68 for
SimLex-999 (Hill et al., 2015)). As such, the expert-created evaluation set, albeit small, can
be seen as a sharp tool for evaluation with a minimal risk of containing noise.

2.4.2 Methods for Dealing with Small Data

We evaluate different context-free distributional models specifically designed for small data.
As a baseline model, we use a standard Word2vec skip-gram with negative sampling (sgns)
model trained on Wikipedia data. We evaluate the following models against the baseline
model:

Count-based model with SVD Count-based models do not encompass random factors and
could thus constitute a more reliable option than models resulting from machine learning.
We use a model based on mutual information (PPMI) with reduced dimensions via Singular
Value Decomposition (SVD).

Word2vec with background corpus It is possible to use an existing Word2vec model as a
kind of ‘background’ space and only train it on the target corpus (in our case QUINE) for the
specific terms under investigation. The underlying idea is that the background model trained
on a comparatively large corpus (we use Wikipedia data) represents a relatively accurate
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semantic space into which new words based on small data can be integrated. We use two
strategies for training new vectors for target words: starting with random initializations and
starting with vectors that are the result of adding up representations from the context of the
target word (Lazaridou et al., 2017).

Nonce2vec with background corpus Nonce2vec (Herbelot and Baroni, 2017) has been
specifically designed to integrate new words based on small data into a background model.
Nonce2vec also starts with vectors that result from summing words in the contexts of the
target term. In addition, Nonce2vec adjusts the parameters of the model (specifically the
learning rate) in such a way that the few occurrences of the target words can be maximally
exploited. As with Word2vec, we experiment with two initial conditions: summed vectors
(default in Nonce2vec) and randomly initialized vectors.

2.4.3 Evaluation

We use similarity, clustering and classification tasks to evaluate the different models from
multiple perspectives. The motivation behind using different tasks is two-fold: (1) Testing
insights by means of multiple methods leads to more reliable conclusions. (2) The different
strategies might give insights into what type of approach is most promising for philosophical
corpus research.

Similarity We use a simple similarity-based task using on the clusters in the evaluation set
as follows: Given a target term, a term from the same cluster as the target term, and a term
from a different cluster, we test whether the target term is more similar to the same cluster
term or the different cluster term. This set-up allows for a simple evaluation in terms of
accuracy. In this set-up, the count-based SVD model and the Nonce2vec model with additive
initialization perform best. Overall, the scores remain low as the two best performing models
only reach about 65% accuracy.

Cluster quality We use a measure of cluster quality (Dunn Index) to measure the coherence
of the clusters defined in the ground truth in the semantic space. The score is based on the
ratio between distances within clusters and cluster size. A high score indicates tight clustering
and thus a high degree of separability. An accurate representation of the terms in the semantic
space should reflect the clusters from the ground truth clearly and thus reach high scores. The
results show that the Nonce2vec and SVD models perform best (but by no means perfectly),
while the other models score very poorly.

Automatic clustering We use k-means clustering (k equals 5, i.e. the number of clusters
in the ground truth) to test how well the embedding representations can be grouped on the
basis of their embeddings compared to the ground truth clusters. The performance (measured
by means of multiple scores) is close to random for all models with a slight advantage for
Nonce2vec and SVD.
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K-nearest neighbor classification As a final step, we explore how well the terms can be
classified into their correct clusters by means of k-nearest neighbor classification. Again, the
SVD model performs best and the best Nonce2vec model outperforms the Word2vec models.
However, scores remain close to random and an inspection of the results indicate that in all
models, most terms are simply classified as belonging to one of the two largest clusters.

Observation about term frequency An additional exploration of the relation between term
frequency and performance on the similarity task indicates that most of the models perform
better the more occurrences of a term they see. For terms with very low frequencies, the
Nonce2vec models clearly outperform the Word2vec models and the SVD model. Word2vec
and Nonce2vec models with additive initializations outperform their random counter parts.

2.4.4 Conclusion

The evaluation presented in this study indicates that models specifically designed to represent
terms based on few occurrences yield promising tendencies. In addition, count-based models
constitute a stable alternative to learning based models of promising (albeit far from perfect)
quality. Despite these initial tendencies, the results indicate that distributional models, even if
they are specifically designed for small data, are still far from being suitable for applications
that could support philosophical research. Given the poor reflection of the clusters defined in
the ground truth, it is unlikely that models could give accurate representations of meaning
shifts across (potentially even smaller) corpora than the one used in this study. It should,
however, also be kept in mind that the ground truth used in this study calls for highly fine-
grained distinctions. Other types of term clusters with more salient differences may constitute
more realistic use-cases.

2.5 Discussion

The studies introduced in this chapter constitute two use-cases in which distributional seman-
tic representations are used directly to study concepts. The fact that distributional semantic
models are trained on textual data enables a usage-based perspective that allows for obser-
vations grounded in empirical data, rather than on the basis of selective close-reading. As
such, distributional models are appealing tools for research about semantic investigating shifts
between corpora to study variation (e.g. differences in the writing of different authors, genre
differences) and chance (e.g. semantic change over the course of multiple decades).

Both studies illustrate the difficulties of deriving reliable insights from the comparison
of distributional models representative of different corpora. Study 1 highlights the variation
in insights derived from multiple models based on the same corpus data. Specifically, it
highlights the risk of mistaking noise for actual semantic shifts. The control tools proposed in
the study can improve reliability. Nevertheless, it remains difficult to derive clear insights.
Study 2 constitutes an evaluation of model accuracy for small, domain specific data. The
results indicate that models specifically designed for small data outperform standard Word2vec
models and that count-based models can constitute stable alternatives. However, the quality
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of the word representations under investigation was still considered too low to enable the use
of distributional representations as a tool for philosophical corpus research.

Both studies presented in this chapter illustrate the need for a better understanding of
how distributional models based on different model architectures react to and generalize over
corpus data. While the models constitute attractive tools for studying semantic phenomena
from a highly empirical, usage-based perspective, it is difficult to distinguish noise from
meaningful signals. Approaches that rely on the use of distributional word representations for
the investigation of concepts could benefit from a better understanding how what aspects of
semantic information can be represented by distributional models and how this information
can be accessed.

2.6 Summary

This chapter illustrated the limitations of context-free distributional models on the basis of
two studies of specific concepts in embedding models. Both studies addressed methodological
challenges involved in assessing the quality and reliability of the models (Section 2.2). The
first study presented a critical analysis of conceptual changes in the conceptual system of
RACISM in two diachronic corpora (Section 2.3). The second study evaluated a range of
distributional models for highly domain specific, specialized philosophical concepts (Sec-
tion 2.4). Both studies illustrate that the interaction between different distributional methods
and information reflected by data is not yet well understood.
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In this part, I will introduce a framework for ‘diagnosing’ semantic properties in dis-
tributional representations. The goal of this framework is twofold: On the one hand, the
goal is to formulate testable hypotheses about the underlying dynamics that determine what
type of conceptual information speakers tend to make explicit in texts and whether they do
it systematically. Only information that fulfills these requirements has a chance of being
represented by a distributional semantic model. In other words, one aim of the framework is
to provide a usage-based, pragmatically informed account of distributional data.

On the other hand, a framework for studying distributional meaning representations has
to consider the methodological constraints of analyzing and comparing such representations.
Analyzing the content of distributional vectors can only be done through vector comparisons.
To ensure that the comparisons can reveal something about a specific semantic property
under investigation, it is necessary to select representations in such a way that the chance
of discovering property-information rather than other aspects of information that happen to
correlate with the property are high.

The theoretical considerations together with the methodological considerations form the
basis of the design of a diagnostic dataset. I will first introduce the theoretical considerations
in Chapter 3. In Chapter 4, I will outline the methodological constraints and introduce the
design of the diagnostic dataset.





3. Semantic Property Information in Text

3.1 Introduction

This chapter presents a framework for the investigation of property information in distri-
butional data. Distributional representations generalize over (usually massive) amounts of
text. Thus, information that is present in the model has to arise from evidence in the texts
underlying the models. It can be assumed that information has to be mentioned consistently
throughout a training corpus to be reflected by distributional vectors. In particular, I present a
framework of hypotheses about how linguistic evidence of semantic properties is expressed
(Section 3.2) and under which circumstances it is expressed (Section 3.3). Since it is not fea-
sible to consider concrete situations, I draw on various theoretical and empirical accounts (e.g.
conversational maxims, generation of referential expressions, corpus research) to formulate
hypotheses on the basis of property-concept relations. Section 3.4 presents an overview of
testable hypotheses.

This chapter is based on work presented in the following publication:

Pia Sommerauer. 2020. Why is penguin more similar to polar bear than to sea gull?
analyzing conceptual knowledge in distributional models. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: Student Research
Workshop, pages 134–142, Online. Association for Computational Linguistics

3.2 Types of Linguistic Evidence

Before I discuss the dynamics that may determine whether a semantic property is reflected
by linguistic co-occurrence patterns, I consider how semantic properties could be expressed
in the first place. We know that co-occurrence patterns of linguistic forms in large corpora
provide good indications of general semantic similarity and relatedness. Semantic similarity
between word forms associated with concepts indicates that the semantic properties associated
with the concepts partially overlap (Erk, 2016). Following the distributional hypothesis, word
forms associated with similar meanings (i.e. similar or overlapping semantic properties) will
appear in similar contexts. Thus, we expect that co-occurrence patterns can be indicative of
individual semantic properties.

Co-occurrence patterns that express or point to a particular semantic property can appear
in different forms and can have varying degrees of reliability. Broadly speaking, semantic
properties of concepts can be expressed directly (e.g. the semantic property red can be ex-
pressed explicitly by the word form red in red dress) or implicitly, for instance by mentioning
an activity that implies a property (e.g. the airplane landed implies that it was flying and can
be seen as evidence for the fact that airplanes have the property fly). Beyond patterns that
directly express a semantic property, we can also expect patterns that point to the property
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indirectly via a semantic category that is associated with the property. For instance, the
property fly is shared by most birds. Thus, co-occurrence with the word bird can act as
indirect evidence of the property. However, it is not reliable, as not all birds fly (e.g. penguins
and ostriches). I call the linguistic forms that reflect semantic properties property-evidence
and distinguish different types of property-specific and non-specific evidence (Section 3.2.1
and Section 3.2.2).

Word forms appearing within a specific window of a target word form may of course be
semantically unrelated to it, depending on the syntactic structure of the respective clause. In
distributional semantic models that do not consider word order or even syntactic structure, this
is not accounted for. Thus, words considered property-evidence are not necessarily always
indicative of a semantic property and could appear in the context window by chance. Overall,
though, I expect that if a semantic property is expressed systematically in the context of a
target word form, the signal it provides should be stronger than this type of noise. In this
section, I attempt a systematic account of different types of property evidence we can expect
from co-occurrence patterns.

3.2.1 Property-specific Evidence

In this approach, I distinguish three types of property-specific evidence: Direct property
evidence (Section 3.2.1), near synonyms of direct expressions (Section 3.2.1) and logical or
circumstantial implications (Section 3.2.1). All three evidence types have in common that
they highlight the specific property under consideration, rather than a semantic category or
thematic field the property is associated with.

Direct property evidence

The most direct form of property-evidence is the word associated with the semantic property
itself. While properties constitute an aspect of conceptual knowledge, they are in most cases
associated with a specific word or a small group of expressions. Perceptual properties, such
as colors or shapes are usually directly associated with a word (e.g. red: red, round: round).
Such direct expressions of the property can appear in different morphological forms (e.g.
fly: flies, flew, flying, etc.). While this type of property evidence is the most direct form of
evidence, it is not necessarily always completely reliable. Linguistic forms can be ambiguous
(e.g. fly and flies can be first and third person present tense forms of the verb fly or singular
and plural forms of the noun fly (insect)).

Near synonyms

Words expressing a property often have near-synonyms (e.g. cold can be expressed directly
by the word cold, but is also covered by the word frozen, the word boiling can be substituted
for the word hot in certain cases and hover partially expresses the same activity as fly). Near
synonyms come very close to expressing the property directly, but may also be not completely
reliable indications in the case of ambiguous forms.
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Implications

A third type of evidence that directly points to the target property are words that logically
imply the target property or at least point to it with high probability. For instance, having
a tire usually implies having a wheel, being able to give birth usually indicates female sex
(but not necessarily gender). Strict logical implications are rare. Furthermore, if reduced to a
simple word-co-occurrence, it is impossible to say with certainty that an individual word can
be interpreted to express this type of implication. We therefore extend this evidence category
beyond strictly logical implications to very likely implications.

3.2.2 Non-specific Evidence

Several expressions are likely to co-occur particularly frequently with concepts that have
a property, but not point to it directly. Furthermore, such expressions can be expected
to also co-occur with other concepts, but they may also occur in a wide variety of other
contexts. I distinguish three types of evidence in this category: Taxonomic category evidence,
thematically related words, and word associations due to cultural biases.

Taxonomic Category Evidence

A less direct source of property evidence are word forms expressing concepts that share the
target property. Taxonomic categories (e.g. ANIMAL, MAMMAL, BIRD) are particularly useful
devices for predicting semantic properties, as categories can be defined as collections of
properties that tend to apply to their members (with varying degrees of certainty) (Rosch,
1973). Words that can indicate shared properties are co-hyponyms (e.g. blackbird and robin
are co-hyponyms of bird and both associated with the property fly) and hypernyms (e.g. bird).
Consider the following sentence taken from Wikipedia: Many well-known birds such as hawks,
eagles, kites, harriers and Old World vultures are included in this group.1 Such co-occurrence
patterns occur frequently enough that they have been exploited successfully for knowledge-
graph population (Hearst, 1992). With respect to specific semantic properties (such as fly),
however, such taxonomic category evidence (e.g. bird) is only partially reliable, as several
birds do not fly. Overall, co-occurrences with property-instances point to taxonomic categories
that are probably associated with the property. They are not, however, property-specific and
thus less reliable than property-specific evidence.

Thematically Related Words

A second source of non-specific property-evidence are expressions that are thematically
related to the target property. It is likely that semantically related (but not similar) concepts
(e.g. coffee and cup occur together in texts. In particular, it can be expected that thematically
related concepts occur in close proximity to one another. For instance, the word pilot is likely
to occur in situations that feature planes or helicopters and thus points towards the property
fly for the sub-category of FLYING VEHICLES.

1Source: https://en.wikipedia.org/wiki/Accipitridae (last accessed 2021-09-06)
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Associated Words due to Biases

A final group of linguistic evidence consists of words associated with a property due to
cultural biases or associations that could neither be explained in terms of taxonomic relations
nor situational relatedness. For example, several attributes carry a gendered interpretation
and thus have the potential of pointing towards a certain gender (e.g. beautiful). Similarly,
terrorism received much attention in the context of airport security and is associated with the
property fly. Such words probably constitute the least reliable source of property-evidence.
However, they may still be salient in co-occurrence patterns.

3.3 Expression of Linguistic Evidence

Not every mention of a concept is necessarily accompanied by the expression of property-
evidence. In this section, I draw on various types of theoretical and empirical evidence to
formulate hypotheses about when property evidence is likely to be expressed. Distributional
models are based on large corpora consisting of texts written in a particular situation. Distri-
butional models thus create semantic representations based on instances of usage. I draw on
pragmatic tendencies and observations from corpus linguistics to formulate hypotheses about
general tendencies.

When considering entire corpora underlying distributional models, it is hardly feasible
to analyze all documents individually. Rather, I aim to make predictions about whether
property-information is likely to be made explicit given a specific property-concept pair. In
addition to the property-concept pair, I expect the property-type itself and the genre of a
corpus to have an impact. With respect to text genres, I will limit the scope to two frequently
used genres represented in large text corpora: Encyclopedic texts (Wikipedia) and newswire
texts. In the following sections, I discuss how property-concept relations, property type,
and genre may impact whether and how property information is expressed in texts. Based
on theoretical and empirical accounts, I identify four phenomena which could impact the
degree to which property-evidence is mentioned explicitly in texts. I count property-specific
linguistic evidence as an instance in which information is being made explicit. The four
phenomena generally define the relation between a property and a concept. In some cases,
they also have implications for property types and the genre within which a text was produced.

3.3.1 Implied Information

A commonly used framework for understanding why speakers chose to make information
explicit or not is the Cooperative Principle coined by Grice (1975). The principle consists of
four maxims which aim to explain the choices speakers make when they engage in successful
communication. While the maxims are primarily used to analyze conversations, written text
can also be viewed as a means of communication that works within the conventions of a
genre.

Semantic properties are part of our conceptual knowledge. Following the Gricean maxim
of quantity, speakers only mention as much information as is required for an utterance to
be understood. Thus, aspects that are already known because they are simply part of what a
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concept means are unlikely to be mentioned. For example, in most cases, it is not informative
to speak or write about red strawberries, because speakers can assume that this knowledge
is already shared by their interlocutors. Stating it explicitly might lead to confusion rather
than successful communication or serve a different communicative purpose from informing
interlocutors about the common color of strawberries. Thus, in general, we can expect that
implied information is not likely to be mentioned explicitly. Whether and to what degree
information is implied can depend on the relation between property and concept, the property
type, and the genre within which a text was produced.

Property-concept relation The degree of impliedness is not the same for all properties-
concept pairs. While the color red might be highly implied for strawberries, it is probably
less strongly associated with bell peppers or apples (even though both can be red). A possible
mechanism underlying impliedness could be tied to property-inheritance via taxonomic
categories. Red may have a higher degree of impliedness for strawberries, because it is
already implied on the level of the category of RED FRUITS. The fact that a cat has four legs
is most likely even more implied (and thus less likely to be made explicit, as the property
of having four legs is tied to the inherited semantic category of MAMMAL). Thus, I expect
that properties shared by members of a category and possibly inherited from a more general
category are less likely to be made explicit.

Property type Previous research indicates that information that is already available as
visual input is not mentioned explicitly. Thus, it has been proposed that information about
visual properties is generally unlikely to be expressed, which has been observed in previous
experiments on distributional representations (see Chapter 1).

Genre Certain text genres have the goal of capturing knowledge about the world. In
particular, encyclopedic texts tend to make aspects of common sense knowledge explicit.
While it is by no means feasible or helpful to explicitly mention all semantic properties of a
particular concept in an encyclopedic entry, such texts can be expected to be more likely to
make conceptual information explicit.

In general, most property knowledge can be considered to be implied. Thus, the ‘default’
assumption is that it is unlikely to be mentioned explicitly and systematically. However,
certain factors (e.g. genre) may trigger explicit mentions nevertheless. Next to genre, the
following three phenomena can also be expected to trigger explicit, property-specific evidence
in texts.

3.3.2 Variability and Specification

Not all properties are equally strongly tied to a particular concept. Some properties can vary
across instances of a concept and/or determine sub-categories (e.g. bears can be brown, black,
or grey; the fur color indicates a subspecies). In some cases, there is a wide variety of possible
options (e.g. cars can have almost any color).
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Property-concept relations In cases in which properties can vary across instances of
concepts, property-specification may indeed be necessary for informative (and ultimately
successful) communication. While it is known that peppers can be red, green, or yellow, the
color indicates slight differences in taste and is thus necessary information. In other cases,
the property-information may be required to pick out the correct referent among various
candidates (e.g. the red car rather than the white car). This notion has been used in approaches
to generating referential expressions (e.g. Dale and Reiter, 1995). In such cases, property
information is less strongly implied and may need to be specified.

The interaction of implied properties and variable properties has also been examined
from the perspective of knowledge extraction. Gordon and Van Durme (2013) describe the
discrepancy between world knowledge and what is expressed in natural language as the
reporting bias: Situations that are in line with our implied conceptual knowledge do not
require specific mentions, whereas unexpected or rare scenarios trigger explicit mentions. For
instance, they compare the mentions to real world event frequencies of car, motorcycle and
airplane crashes in proportion to miles travelled. Even though a person is far more likely to
experience a motorcycle or car crash than a plane crash based on these proportions, plane
crashes are reported with much higher frequency. They propose that the same tendency will
hold for expected compared to unexpected properties (e.g. a man with two legs v.s. a man
with one leg).

In general, variable properties often have to be specified to select the correct concept
or referent when communicating. Thus, we can expect both types of property-concept
relations (limited and open variability of possible properties) to trigger property evidence.
Distributional semantic models, however, are more likely to reflect property-evidence if it is
mentioned systematically. We can expect systematic property evidence in cases where there
is a limited range of options (e.g. bears are either brown, grey, or white). In contrast, in the
case of a wide (almost unlimited) range of possible properties, we are much less likely to find
systematic mentions (e.g. t-shirts can come in a wide range of colors).

It should be noted that it is debatable whether concepts with a highly variable relation
to a property should indeed be counted as examples of the property. For instance, it would
be odd to consider t-shirts as examples of things which are red. What is more likely is that
certain concepts have a strong association with one particular color (e.g. dress is strongly
associated with black), but can also have other colors (dresses can also be green). In such
situations, however, the property would be seen as a typical property of the concept, which
constitutes a different property-concept relation (see Section 3.3.3). In other cases, highly
variable properties might be considered rare or unusual. In the binary classification framework
adopted in this thesis, the latter would be treated as negative examples. In some instances, it it
might be difficult to decide whether a property should still be considered to apply to a concept.
When testing a language model, such potentially ambiguous examples will be removed from
the diagnostic dataset.

Property-type A group of properties that tends to be particularly variable are color proper-
ties. In cases in which color is variable, it may indeed be likely to be mentioned. In cases in
which there are many options, however, the mentions may not be systematic enough to arise
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from distributional data. The variability of color properties is a potential exception to the
general expectation that visual properties are not likely to be mentioned explicitly. Explicit
property mentions due to variability is particularly likely to affect a subset of property-concept
pairs with color properties.

3.3.3 Property-Illustrations

Highly implied property knowledge can be expressed explicitly to fulfil a communicative
goal beyond the expression of necessary distinctions. Corpus research by Veale and Hao
(2007) and Veale (2013) shows that concepts that are so strongly associated with a property
that they can serve as illustrations of it can be extracted from corpora. For instance, particular
colors can be described in terms of particularly good examples that exhibit them (e.g. as red
as blood, as black as ebony).

Property-concept relations Concepts that tend to be used for property illustrations tend
to be typical examples of a property. This type of typicality relation is likely to correlate
with a particularly strong association between a property and a concept. Association strength
by itself, however, is most likely not sufficient to trigger explicit mentions. For instance,
properties listed by many participants for a concept in property norm datasets show strong
associations, but do not necessarily only capture pairs in which the concept can be used to
illustrate the property (e.g. green-broccoli). In many cases, strong association may indicate
that the property is typical of the concept, rather than the other way around.

It is questionable whether such illustrative expressions occur systematically enough to
be reflected by distributional representations. If concepts can indeed be used to illustrate a
property, they should at least have higher chances for more explicit property mentions than
concepts that are linked to the property merely via strong association.

Genre Property illustrations may be more likely in texts that have a higher degree of imagery
(such as different literary genres). Thus, it can be expected that they are not particularly
common in encyclopedic texts. News texts are not particularly well known for imagery either,
but corpora consisting of a wide selection of news texts have higher chances of containing
slightly more creative writing than encyclopedic texts.

3.3.4 Affordance

Within cognitive linguistics, afforded actions form a central component of semantic knowledge
(Gibson, 1954; Glenberg, 1997). Afforded actions refer to the actions available to a person in
a specific situation. For instance, a candle can be lit or extinguished. In many cases, a candle
has a round shape and could also be rolled across a table. Such actions can be seen as building
blocks of bigger events. Thus, it is likely that they are also mentioned in natural language.

Property-concept relations Existing research has shown that distributional representations
reflect afforded actions (Fulda et al., 2017), but they tend to fail at distinguishing unusual
but possible from impossible actions (Glenberg and Robertson, 2000). While it is likely that
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commonly performed activities will be mentioned systematically (e.g. lighting a candle), it is
unlikely to find much evidence for unusual activities (e.g. rolling a candle).

Actions or uses can also provide indications about other properties of a concept (e.g.
attributes or parts). For instance, things that are round tend to roll (e.g. a bowling ball),
things that are used for cutting tend to have a sharp edge (e.g. a knife). Explicitly mentioned
activities can thus be a reflection of other properties by means of implication. It can be
expected that properties that enable common uses or activities are reflected by means of
property-evidence in the form of implications. If such activities or uses are common, they
have high chances of being mentioned systematically.

Genre Genres can be expected to differ with respect to their emphasis on events. It can
be expected that news texts are centered around events, while encyclopedic texts tend to
emphasize the conceptual level. Thus, it can be expected that afforded actions and affording
properties are better reflected in news texts than in encyclopedic texts.

3.4 A Framework for Testing Hypotheses

In this section, I present hypotheses that can be tested based on the considerations about
property evidence and factors that may trigger evidence expressions. I first focus on semantic
relations and then consider possible interactions with genre and property types.

Semantic Relations

Table 3.1 presents specific semantic relations based on the factors presented in the previous
section. A combination of a property and a concept can be defined by one or multiple relations.
The examples presented in the table should be read as illustrations of a relation.

Each semantic relation is tied to a hypothesis about the type of property evidence expected
to be found in corpora (summarized in Table 3.2). The table also shows a mapping from
relations to quantifier information similar to the Quantified McRae norms (Herbelot and
Vecchi, 2016). For instance, the variability relations express that a property applies to a subset
of instances, rather than all instances of a concept. This information is relevant for contrasting
positive and negative examples of a property.

The hypotheses about property-evidence should be interpreted as follows: A particular
property-concept pair (e.g. green-broccoli) can be characterized by multiple semantic rela-
tions (e.g. implied_category, typical_of_concept). If none of the relations are
expected to trigger evidence, we do not expect to find evidence in the distributional data.
If one of the relations is expected to trigger property evidence, we expect this relation to
‘override’ the other relations. For example, the pair sweet-sugar can be described by typi-
cal_of_concept, typical_of_property, and affording_activity. In this
case, the relations expected to trigger with property-evidence override the relation typi-
cal_of_concept.

The summary presented in Table 3.2 allows for testing hypotheses about the amount and
type of property-evidence found in distributional data. I derive general and phenomenon-
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specific predictions, and predictions about the three different types of subsets identified by
the relations (ALL, SOME, FEW-NONE):

• General: Evidence representation should be stronger for pairs characterized by relations
hypothesized to trigger systematic evidence expression than relations not hypothesized to
trigger systematic evidence expression.

– Positive relations hypothesized to trigger evidence:

* typical_of_property

* affording_activity

* afforded_usual

* variability_limited

– Positive relations hypothesized not to trigger evidence:

* implied_category

* typical_of_concept

* afforded_usual

* variability_open

– Negative relations:

* rare

* unusual

* impossible

• Phenomenon-specific: While the overall tendency described in the general hypothe-
sis may hold, differences between individual relations may not necessarily follow the
separation outlined above. Therefore, I formulate phenomenon-specific hypotheses:

– Impliedness: Pairs only characterized by implied_category should have a lower
degree of property-evidence in the context of the concepts than pairs characterized by
any other positive relation.

– Property-illustration and typicality: Pairs characterized by typical_of_prop-
erty should have a higher degree of property-evidence than pairs characterized by
typical_of_concept.

– Affordedness:

* Pairs characterized by affording_activity should have a higher degree of
property evidence than pairs characterized by afforded_unusual.

* Pairs characterized by afforded_usual should have a higher degree of prop-
erty evidence than pairs characterized by afforded_unusual.

– Variability: Pairs characterized by variability_limited should have a higher
degree of property evidence than pairs characterized by variability_open.

– Negative relations:
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* Pairs characterized by rare should have a higher degree of property-evidence
than pairs characterized by unusual and impossible.

* Pairs characterized by unusual should have a higher degree of property-evidence
than pairs characterized by impossible.

• Subsets:

– Pairs in the ALL category should have a higher degree of evidence than pairs in the
SOME and FEW-NONE categories.

– Pairs in the SOME category should have a higher degree of evidence than pairs in the
FEW-NONE category.

Property-type

Based on the considerations with respect to property-type, I expect the following tendencies:

• Most pairs that involve a property expressing an action or use will be characterized by the
relation afforded_usual. Thus, it is likely that most concepts associated with these
properties will exhibit property-specific evidence.

• Pairs involving properties that are closely tied to taxonomic categories (e.g. lay_eggs-
seagull) are likely to be characterized by the relation implied_category. They are
unlikely to be characterized in terms of any of the variability relations. Unless the
properties are also tied to specific activities or uses, concepts involved in such pairs are
unlikely to exhibit property-specific evidence.

• In general, property-evidence for color properties is expected to be low. However, for
concept-property pairs characterized by variability_limited, property-evidence
is expected.

3.4.1 Genre

Based on the considerations with respect to genre, I expect the following tendencies:

• Concepts involved in pairs characterized by the relation implied_category may
exhibit more property evidence in encyclopedic texts than in news texts.

• Concepts involved in pairs characterized by action- and use-related properties may exhibit
more evidence in news texts than in encyclopedic texts.

3.5 Summary

In this chapter, I have presented a framework of hypotheses for the analysis of property-
evidence in text. The core of the framework consists of semantic relations that characterize
property-concept pairs. In addition to these relations, I considered the impact of and in-
teraction with property types and characteristics of genres. The focus has been placed on
property-specific evidence in corpus data.

51



CHAPTER 3. SEMANTIC PROPERTY INFORMATION IN TEXT

In the following chapter, I will consider fundamental methodological considerations
that have to be considered when testing or ‘diagnosing’ semantic property evidence in
distributional representations. Based on these considerations, I will present a design for a
diagnostic dataset that (1) can be used to test the hypotheses presented in the current chapter
and (2) adheres to the methodological constraints imposed by distributional representations.
In this context, non-specific property evidence will receive more attention.
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4. Methodological Framework and Dataset
Architecture

4.1 Introduction

The fundamental problem of studying distributional representations (whether they are taken
from a context-free or from a contextualized model) is that they represent information through
structure. That is, they can only be informative when put into relation to other representations.
The representation of the word penguin in isolation cannot be interpreted. The vector only
receives meaning when considered in relation to other word vectors in the semantic space.
The meaning of individual words is defined by similarities to and differences from one another.
For example, it can be expected that the representation of penguin is close to the words bird,
animal, and polar bear. Moreover, penguin is probably closer to bird and animal than to
table and lamp.

Comparisons on the basis of distances in the semantic space can provide indications about
the quality of embedding vectors. However, they are limited by the fact that we cannot know
what causes their closeness or distance. For example, it is likely that the representation of
penguin is close to bird and polar bear. The semantic relations between penguin and bird
is different from the relation between penguin and polar bear. Consequently, the semantic
properties shared by penguin and bird are different from the semantic properties shared
by penguin and polar bear. These differences do not arise from a comparison of vector
distances in the semantic space. This thesis aims to ‘diagnose’ semantic properties through
testing whether word representations can be distinguished on the basis of a specific semantic
property. For example, I test whether it is possible to perform the following task on the basis
of distributional representations (Example 8):

(8) Which of the following concepts can be described by can fly?

a. seagull

b. table

c. airplane

d. penguin

e. bee

f. strawberry

Informative diagnostic tasks crucially depend on an informative dataset. This chapter
presents a number of methodological considerations about the analysis of distributional
representations that inform the design of such a diagnostic dataset. A dataset that can reveal
whether distributional vectors contain property-specific information in diagnostic experiments
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has to adhere to a number of constraints (outlined in Section 4.2). Based on these constraints,
I present the architecture of the diagnostic dataset: Section 4.3 outlines the selection of
properties and Section 4.4 describes that selection of example concepts. Section 4.5 presents
an analysis of the candidate properties and concepts.1

The properties and candidate concepts presented in this chapter constitute the architecture
of the dataset. To make the dataset informative with respect to the hypotheses presented in
the previous chapter (Chapter 3), the resulting property-concept pairs still have to be labeled
with property-concept relations. The subsequent part will outline the annotation process and
an analysis of the finished dataset.

This chapter is based on the following publications:

Pia Sommerauer, Antske Fokkens, and Piek Vossen. 2019. Towards interpretable, data-
derived distributional semantic representations for reasoning: A dataset of properties and
concepts. In Wordnet Conference, page 85

Pia Sommerauer. 2020. Why is penguin more similar to polar bear than to sea gull?
analyzing conceptual knowledge in distributional models. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: Student Research
Workshop, pages 134–142, Online. Association for Computational Linguistics

A first version of the methodological considerations and a small pilot dataset were presented
in the following publication:

• Pia Sommerauer and Antske Fokkens. 2018. Firearms and tigers are dangerous, kitchen
knives and zebras are not: Testing whether word embeddings can tell. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 276–286

4.2 Detecting Properties in Distributional Vectors

In this section, I present the core assumptions behind the interpretability methods I use
to investigate whether distributional models represent semantic properties. Initially, the
dataset has been designed for the analysis of context-free distributional representations. As
context-free models and contextualized models have different properties, I design different
diagnostic tasks for each model type (see Chapter 1 for a description of context-free and
contextualized models). Context-free representations have gained popularity as they work
particularly well on downstream tasks in which they are used as input for machine learning
models (usually neural networks) trained on a specific task (e.g. Socher et al., 2013). This
indicates that context free vectors capture information that can be exploited successfully by
neural classifiers. Therefore, I employ diagnostic classification to analyze the content for
context free vectors (Section 4.2.1).

1The code used to compile the candidate dataset can be found at https://github.com/cltl/
semantic_property_dataset
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4.2. DETECTING PROPERTIES IN DISTRIBUTIONAL VECTORS

Contextualized language models have been shown to perform particularly well when
fine-tuned on a specific task (e.g. Devlin et al., 2019). While it is possible to extract vector
representations of individual words from contextualized models and use them in a diagnostic
classification task, this set-up comes with a number of additional choices and possible
parameters which complicate the analysis: Firstly, contextualized models capture words
in context and deriving representations of individual words requires additional steps and
may introduce noise (Rogers et al., 2020). Secondly, contextualized models capture words
in context on multiple layers. In a fine-tuning set-up, the model can exploit information
from all layers. In contrast, in a diagnostic classification set-up, it would be necessary to
either use individual layers or concatenate them. Neither option realistically represents the
information the model has at its disposal when used for language modeling or a specific task.
Therefore, I opt for a challenge task designed to reveal property knowledge (Section 4.2.2).
Both paradigms impose methodological constraints that have to be considered in the dataset
design (Section 4.2.3).

4.2.1 Diagnostic Classification

The fundamental assumption behind diagnostic classification is the following: If information
is present in a latent vector representation, a classifier should be able to learn to recognize
this information and classify unseen examples correctly. Translated to semantic properties,
this means the following: If a distributional vector representation of a word carries property-
evidence (e.g. being able to fly), a binary classifier should be able to learn how to distinguish
positive examples (e.g. seagull) of the property from negative examples (e.g. penguin).
The property-concept dataset is primarily designed to be informative in such a diagnostic
classification set-up. The details of the experimental set-up are introduced in Chapter 8.

A fundamental problem of this approach is that successful classification does not neces-
sarily mean that the classifier did indeed identify property-specific information. Consider
the following example: Suppose a classifier is trained to distinguish positive examples of the
property red from negative examples. Positive examples of the property could, for instance,
be words referring to red fruits: strawberry, raspberry, cherry, pomegranate. Negative
examples could consist of words referring to green garden plants (e.g. ivy, willow, privet,
beech). If the classifier successfully learns to distinguish these examples, it could have
identified information about a number of semantic aspects that allow for a correct distinction:
It could have detected information about the fact that all positive examples tend to be used
as food, that they tend to have a sweet taste, that they are juicy or that they are often used in
combination with each other. Vice-versa, it could have learned that the negative examples
tend to be categorized as shrubs, are offered for sale in garden centers and generally have
nothing to do with food. Whether the classifier has identified information about the target
property red or any of the other semantic aspects that could lead to successful classification
remains an open question.

The simplified example illustrates how the distribution of positive and negative examples
determines what a diagnostic classification experiment can reveal. Any supervised clas-
sification approach relies on finding regularities that are shared by all (or most) positive
examples. Negative examples do not share these regularities. Ideally, the only shared feature
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(a) Target property (present
in black, absent in white)
and other dimensions corre-
lates with positive and negative
classes.

(b) The only dimension corre-
lating with the positive and neg-
ative classes is the target dimen-
sion of the target property.

(c) Highly similar positive and
negative examples that can
only be distinguished by the di-
mension of the target property

Figure 4.1: A schematic representation of vectors of positive and negative examples of a
property. To ensure that shared and distinguishing patterns identified by a classifier are
representative of the target property, positive and negative examples should only be separable
based on the target property.

of all positive examples should be the semantic property under investigation. However, it is
possible that other features also allow for distinguishing positive from negative examples. In
such a scenario, the dataset offers multiple routes to the correct classification output. High
performance does not necessarily mean that the classifier detected the property in question.
In contrast, if high performance can only be achieved by detecting the target property, high
performance indeed an indication that the embedding representations carry information about
the target property.

The intuition behind such a dataset distribution is illustrated in Figure 4.1. If the positive
examples can be distinguished from the negative examples by means of multiple aspects
of semantic information (for instance, because they share the same category) successful
classification does not indicate property information (Figure 4.1a). In contrast, high classifier
performance is indicative if the property information is the only aspect that positive examples
have in common and negative examples do not (Figure 4.1b) or if the property information is
the only aspect that distinguishes positive from negative examples (Figure 4.1c). The latter
two scenarios can be achieved by either a highly diverse set of positive and negative examples
of the property (e.g. taken from many different semantic categories) or a distribution in which
positive examples are highly similar to negative examples.

4.2.2 Challenge Task

To analyze contextualized language models, I design a task in which a fine-tuned contextual-
ized model has to apply property knowledge in order to perform well. Property knowledge
encompasses aspects of lexical- as well as common sense knowledge. An existing framework
for assessing this type of knowledge has been proposed in the form of the Winograd Schema
Challenge (Levesque et al., 2012). The challenge consists of pronoun resolution problems
that can only be solved by reasoning various semantic aspects expressed by individual words
or phrases. An example of a Winograd pronoun problem is shown below (Example 9):
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(9) The trophy doesn’t fit into the brown suitcase because it is too large.

To resolve the pronoun it successfully, a model has to engage in complex reasoning about the
fact that if something does not fit into a container, it means that the thing (i.e. the trophy) is
too large (rather than the container).

The same framework can be used to design a task that specifically targets semantic
property knowledge (Example 10):

(10) Yesterday, I used a knife to slice an orange. Unfortunately, it was so juicy that I
stained my t-shirt.

To resolve the pronoun correctly, a model has to know that oranges are more likely to be juicy
than knives. Resolving the task involves the following steps: (1) The model has to recognize
the aspect that links to pronoun to one of the candidate concepts (orange or knife). This trigger
is expressed by the adjective juicy. (2) The model has to decide which candidate is more likely
to be described by juicy. The task has been adapted to be more suitable for contextualized
language modeling by recasting it as a ‘fill in the blank’ type of task (Sakaguchi et al., 2020).
Example 10 is then transformed to Example 11:

(11) Yesterday, I used a knife to slice an orange. Unfortunately, the __ was so juicy that I
stained my t-shirt.

The use of positive and negative examples from the diagnostic dataset can be used to create
Winograd-style examples. Chapter 10 presents a template approach for automatically gen-
erating a large number of such examples and an evaluation of contextualized models on the
generated Winograd-style property dataset.

How should a language model be able to perform such a complex task? The underlying
idea is the following (refer to Chapter 1 for a detailed explanation): The model learns semantic
information by means of performing a language modelling task (in the case of Bert, this
would be masked token prediction and next sentence prediction). In the fine-tuning phase, the
model is trained on a supervised classification task: Given the two possible versions of the
sentence pair, (either completed with orange or knife,) predict the correct one. If the model
has captured the relevant information about the candidate concepts and the trigger word in
the pre-training phase, the supervised fine-tuning process should guide the model towards
exploiting this information for predicting the correct version of the second sentence.

The danger of this approach is that the model can rely on a superficial word association
between the correct concept and the trigger word (i.e. the word expressing the semantic
property), as pointed out by Sakaguchi et al. (2020). This danger can be mitigated by means
of selecting candidate concepts in such a way that superficial associations are not helpful. For
instance, two similar concepts from the same semantic category (e.g. penguin v.s. seagull)
are more difficult to distinguish than two concepts from entirely different categories (e.g.
orange v.s. knife). To distinguish orange from knife with respect to juicy, a model might
simply make the correct choice because of a superficial association between orange and
juice or juicy, which is simply not there for knife and juicy. If a model does indeed have an
association between seagull and fly, but not penguin and fly, it is more likely to be a reflection
fine-grained property knowledge.
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4.2.3 Dataset Requirements

Both approaches described above impose a number of requirements on an informative diag-
nostic dataset of properties and concepts.

Verified Negative Examples

Any diagnostic approach that relies on a comparison between positive and negative examples
relies on the assumption that the positive and negative examples are indeed correct. A common
pitfall of existing approaches is to extract both positive and negative examples from feature
norm datasets (see Chapter 1). As a basis for the selection, it is common to use the feature
production frequencies; concepts for which a property has been listed multiple times are taken
as positive examples, whereas concepts for which a property has not been listed are taken as
negative examples. This approach works well for positive examples, but runs risk of resulting
in a relatively high number of false negatives. For instance, in the CSLB norms, 36 concepts
are labeled as is_bird, but 20 out of those 36 concepts are not labeled as has_two_legs (e.g.
duck, eagle, flamingo). Thus, taking all concepts for which the property has_two_legs has
not been listed as negative examples of the property would result in at least 20 false negatives.

Sufficient Positive and Negative Examples

A second requirement for any approach that relies on supervised learning is a sufficient
number of examples for training and testing. The assumption behind diagnostic classification
is that a classifier should be able to learn information if it is encoded based on a small set of
examples. Still, the number of examples has to allow for a test set that is big enough to draw
meaningful conclusions from the performance. In the case of semantic properties, it has to be
considered that not all examples may carry property-information (see Chapter 3). Thus, it has
to be anticipated that a certain proportion of examples may simply act as noise. To ensure that
the diagnostic approach is still robust, the dataset size per property should be large enough to
allow for this type of noise.

In addition to the constraints imposed by machine learning, the datasets should also
contain a selection of different properties and enable comparisons between properties of
different property-types (e.g. perceptual properties, activities and functions) Even though
the hypotheses I introduced in Chapter 3 rely on the property-concept relation, previous
research indicate that certain types of properties are better represented by distributional data
than others. For example, Rubinstein et al. (2015) find that embeddings provide information
about encyclopedic properties, but not about perceptual properties (refer to Chapter 1 for
details). A sensible comparison to previous findings thus requires conclusions about individual
properties.

Diverse Examples

A particular risk of diagnostic classification is that the classifier learns a distinguishing feature
that happens to correlate with the positive examples of a property, rather than property-specific
information. As illustrated by an example involving the property red in Section 4.2.1, it may
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learn to identify the category of fruits, rather than words with the property red. To avoid such
misleading conclusions, the positive and negative examples of a property should be as diverse
as possible. This diverse distribution should create a situation in which the property-specific
information is the only aspect that connects positive examples and distinguishes them from
negative ones. This requires (a) a selection of semantic properties that apply to a diverse set
of concepts and (b) a concept selection process that targets a wide range of concepts.

High Similarity between Positive and Negative Examples

In both diagnostic approaches, positive and negative examples with a low similarity increase
the risk of misleading results: In the case of diagnostic classification, a low overall similarity
between positive and negative examples may result in a situation in which a classifier performs
highly based on learning multiple categories associated with the target property, rather than
the target property.

In the case of the Winograd-style challenge, low semantic similarity between positive and
negative examples also poses a risk. In such cases, it is possible that the positive example has
closer lexical association with the property than the negative example. For instance, given
the property yellow, the positive example apple and the negative example idea, the correct
referent can be picked based on the fact that concrete things can have colors, but abstract
concepts usually do not. This does not reveal whether a model ‘knows’ that apples can be
yellow. Thus, a combination of highly similar concepts that can only be distinguished by
means of the target property provides stronger indications that the model can capture fine-
grained semantic properties rather than exploit correlations to perform the task. A diverse set
of examples can lead to more robust results, as high performance on a diverse set of positive
and negative examples reduces the chance that the model exploited accidental correlations.

4.3 Selection of Properties

This section presents the semantic properties selected for the diagnostic dataset. The properties
were selected manually from the properties represented in the CSLB norms based on the
following two rationales:

1. It should be possible to find a large set of words that have the property.

2. The property should apply to concepts from many different traditional taxonomic cate-
gories to increase the diversity of positive examples.

In addition to these two rationales, I selected different property types to enable a comparison
to previous findings. Various studies provide indications that visual information tends to be
absent from distributional representations, while information that is strongly tied to taxonomic
categories is represented well. I specifically include these property types to test whether
previous findings hold given the example distribution outlined above.

Table 4.1 shows the 21 selected properties with their property types. The types are
based on the categorization used in the CSLB norms. Modifications have been made for the
following reasons:
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• Different types of perceptual properties may have a different relevance for afforded action
(e.g. uses) and should be treated separately.

• I treat part properties as feature type rather than as visual perceptual properties, as they
tend to serve as distinguishing features between taxonomic categories (Miller, 1995) and
are thus closely tied to specific taxonomic categories. They are much closer related to
taxonomic properties than visual-perceptual properties.

• I treat properties that can be seen as a combination of multiple ontological properties and
depend on interpretation as ‘complex’ properties (e.g. multiple properties in combination
lead to the fact that tigers are interpreted as dangerous animals).

type type (CSLB) properties
taxonomic taxonomic lay_eggs
part visual-perceptual wheels, wings
function/action functional roll, fly, swim
complex encyclopedic dangerous
complex functional used_in_cooking
perceptual (taste) other perceptual juicy, sweet
perceptual (temperature) other perceptual cold, hot, warm
perceptual (color) visual-perceptual black, blue, green, red, yellow
perceptual (shape) visual-perceptual round, square
perceptual (material) visual-perceptual made_of_wood

Table 4.1: Properties selected for the diagnostic dataset.

4.4 Selection of Concepts

In this section, I describe the selection of candidate concepts for each of the properties.
It is important to note that this step only concerns the selection of example candidates.
The candidate concepts still need to be verified and annotated with the semantic relations
introduced in the previous chapter (Chapter 3). The annotation task and process are outlined
in Chapter 5 and Chapter 6.

Ideally, each property should have a balanced set of positive and negative examples
whose distribution follows the requirements outlined in Section 4.2.3. To achieve this, I
exploit existing resources (Section 4.4.1) and a distributional model (Section 4.4.2). For
most properties, these two steps result in a large number of candidate concepts. I use a
sub-sampling method to select candidates with respect to a number of linguistic features
(Section 4.4.3).

4.4.1 Extraction from Existing Resources

I extract positive and negative example candidates from feature norm datasets, lexicons,
and a stereotype dataset via different search strategies. These resources primarily provide
information about positive examples, but also allow for the extraction of good negative
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type resources

feature norm sets McRae norms (McRae et al., 2005),
CSLB norms (Devereux et al., 2014)

lexicon WordNet (Fellbaum, 2010; Miller,
1995)
ConceptNet (Speer and Havasi, 2012)

stereotype data concepts representing stereotypes of
properties (Veale, 2013)

feature norms negative
extension

subset annotated on top of the CSLB
norms Sommerauer and Fokkens (2018),
quantified McRae norms (Herbelot and
Vecchi, 2015)

Table 4.2: Overview of resources used for finding positive and negative property candidates.

candidates. In addition, small sets of negative examples were extracted from the quantified
McRae norms (Herbelot and Vecchi, 2016). Another small set of negative examples was
verified by hand in a pilot study. An overview of all resources is provided in Table 4.4.1. In
this section, I outline how the different resources were exploited to select suitable candidates.

Direct Property Searches

Directly searching for a property in the feature norm sets returns a set of reliable candidates
for positive examples. The lexical resource ConceptNet (Speer and Havasi, 2012; Speer et al.,
2017) also allows for such direct searches. It links concepts to different attributes via semantic
relations, such as HasProperty. ConceptNet also records negative associations: The relation
NotHasProperty indicates that an attribute is not associated with a concept. I searched concept
net for attributes that represent the target properties and use the relations to retrieve positive
as well as negative examples. The stereotype dataset collected by Veale (2013) also allows for
such a direct search. It contains concepts that serve as particularly good property-examples
derived from corpus data. This direct search resulted in relatively small sets of examples with
uncontrolled distributions.

Taxonomic Categories

To increase the number of candidates in a way that increases the chances of diverse examples
within the positive and negative class and high similarity of positive to negative examples, I
exploit taxonomic category information captured in the Princeton WordNet noun hierarchy
Miller (1995). Consider the example of the property fly: There are several semantic categories
whose members are likely to have the property fly, such as BIRD, VEHICLE, and INSECT.
These categories do, however, also contain negative examples of the property, such as flightless
birds and insects, and vehicles that do not fly. The advantage of such negative examples is
that they are likely to share a many other properties with their positive counter parts (e.g.
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used_for_transportation and wings). Beyond increasing the number of candidates, the
advantage of picking more than just a single category is an increase in diversity of candidates.

To access members of semantic categories via the Princeton WordNet hierarchy, I exploit
its hyponymy relations. For each property, I manually select words that express suitable
semantic categories. I then manually select the synsets that best represent each category
(based on synset members, definition, and hyponyms) and extract all lemmas included in their
hyponym synsets.

Logical Implications

In a pilot study (Sommerauer and Fokkens, 2018), we manually verified negative property
examples extracted from the CSLB norms. Rather than counting every concept for which a
property has or has not been listed as a positive or negative example, we exploited logical
implications between properties to preselect concepts that were highly likely positive or
negative examples of a target property. In a second step, we manually verified the preselected
examples. For example, we used category membership to extend the positive examples of the
property is_a_bird by means of selecting all concepts for which the property is_an_animal
has been listed. Vice-versa, we assumed that concepts labeled with has_wheels as highly
unlikely to be positive examples of used_in_cooking.2 I used the resulting annotations to
extend the sets of positive and negative examples of the property datasets.

It should be noted that not all properties from the initial pilot study are part of the current
dataset.3 The candidate examples collected in this process have the disadvantage of a lack
of diversity. Furthermore, positive and negative examples tend to be taken from radically
different semantic categories. They do, however, have the advantage of constituting reliable
positive or negative examples.

4.4.2 Extraction from a Distributional Model

The strategies outlined in the previous section returned candidates for positive and negative
property-examples to varying degrees of success. For instance, I collected 105 probably
positive and 256 probably negative example candidates for black, but only 6 probably positive
and 63 probably negative candidates for round. In addition to resulting in limited candidate
sets, not all strategies guarantee a suitable example distribution. In this section, I describe
how I use a distributional model to (1) increase the number of candidates and (2) specifically
target negative examples with a high semantic similarity to positive examples.

Particularly challenging examples for diagnostic experiments are positive examples that
cannot easily be distinguished from negative examples based on low similarity (or high
distance) between them. For instance, the word penguin is likely to have a high distributional
similarity to several positive examples of the property fly. If penguin can successfully be
distinguished from positive examples (e.g. puffin, seagull, pigeon) in a diagnostic experiment,
this is good evidence that the positive examples carry property-specific information.

2I carried out the selection and manual verification process together with my co-author Antske Fokkens.
3The pilot dataset and a record of the selected implications and the annotation discussion can be found at

https://cltl.github.io/semantic_space_navigation.
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To target particularly challenging examples, I employ the following strategy: I use verified
positive examples of a property as seed words for a vector representation of the property. The
verified positive examples are examples for which a property has been listed in a feature norm
set or that have been verified manually. The property vector is created by taking the centroid
vector of the seed word representations in a distributional model. The words close to this
vector have a high cosine similarity to the positive seed words. Some of the words close to the
vector may share the target property, while others will not. I extract the 200 nearest neighbors
of the property vector. To specifically target challenging examples, I apply the following
filtering step: I manually inspect all words that have a higher distance to the property vector
than the word with the highest distance that is a verified positive example. From these words,
I exclude all negative examples of the property, as they are unlikely to constitute challenging
examples. For this candidate extraction step, I used a skip-gram embedding model trained on
the full Wikipedia dump from August 2018 using the settings recommended by Levy et al.
(2015).

4.4.3 Sampling Candidates

The candidate extraction steps presented in Section 4.4.1 and Section 4.4.2 result in large
sets of candidate concepts for most properties. Most of the sets are larger than necessary
and annotating the full set of candidates would result in high annotation costs. In addition,
the candidate set extension via the distributional model partly returned noisy data (e.g.
unconventional spelling variants). In this section, I outline how I reduced the sizes of the
candidate sets while attempting to keep concept candidates representative of various linguistic
factors that may impact (1) the distributional representations of words and (2) the behavior of
annotators.

Preprocessing

To avoid noise, I filter the candidate concepts with respect to the following criteria:

• Is the candidate concept a noun in Princeton WordNet?

• Does the Spacy lemmatizer (Honnibal and Montani, 2017) recognize the candidate concept
as a noun?

Only words for which both criteria hold are considered for further sampling.

Sampling

There are various linguistic and distributional factors that can impact the nature of distri-
butional representations as well as the behavior of annotators (e.g. word frequency and
ambiguity). To ensure that the concept candidates of a property-dataset do not over-represent
one of these aspects and thus distort the results of the annotation process or the diagnostic
experiments, I subsample candidates with respect to factors with a potential impact. Ideally,
the positive and negative examples of each property dataset should be balanced with respect
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to these factors. I first present the different factors and then describe how I use sampling to
achieve a balanced distribution.

Distance to the property vector. As outlined in Section 4.4.2, I use the verified positive
examples to create an approximated representation of the property in the distributional space.
Words close to this vector have a high cosine similarity to the positive examples. It is likely
that they are positive examples of the property or challenging negative examples. There may,
however, also be positive examples farther away from the property-vector. These examples
are also valuable, as they are likely to be dissimilar to most other positive examples and thus
constitute particularly challenging positive examples. To ensure that the entire spectrum is
covered, I sample candidates with respect to their cosine distance to the property vector.

Frequency. Word frequency in a corpus is a major component of the distributional
characteristics of a word. It determines in how many contexts a word can appear and thus how
much distributional evidence a corpus contains about its meaning. At the same time, word
frequency has also been shown to have an impact on how humans process words (Brysbaert
et al., 2018) and may thus have an impact on how annotators annotate concept-property
relations. The positive and negative examples of each property should thus cover a broad
range of word frequencies. I sample from three different frequency ranges. The ranges are
determined by using a logarithmic scale.

Lexical ambiguity. If a word form is associated with more than a single meaning, it
is ambiguous (e.g. bank). While this definition can also include homophones (i.e. words
that have the same phonological realization), I limit it to equivalent spelling, as the data
underlying the distributional models consist of written texts. Lexical ambiguity can describe
ambiguity in terms of word senses (i.e. one form, multiple senses) and ambiguity in terms
of reference (i.e. pronouns can be used to refer to different person-entities). I only consider
ambiguity in terms of senses, as it is recorded in lexical resources. Ambiguity has a major
impact on context-free distributional models, as words with different senses will be used in
different (and potentially unrelated) contexts. It has been shown that ambiguous words receive
vectors that place them in between the different usages in a semantic space (Del Tredici and
Bel, 2015). Contextualized language models are equipped to distinguish different usages of
the same word form. Initial experiments on contextualized models indicate that rather than
representing neatly distinguishable senses of polysemous words, contextualized models are
also impacted by ambiguity and form semantic regions that are not clearly distinguishable in
terms of senses (Yenicelik et al., 2020). In addition, ambiguous lexical items are likely to
impact the behavior of annotators in annotation tasks. This is relevant for the collection of
concept candidates, as the diagnostic dataset requires fine-grained semantic annotations of
the relations that hold between properties and concepts (see Chapter 3).

Ambiguity can be caused by different phenomena: A major cause of lexical ambiguity is
polysemy. Polysemous words have more than a single sense. Lexical resources usually mark
this by means of multiple definitions of a lemma. In Princeton WordNet, the same lemma
can be part of multiple synsets. Some resources distinguish polysemy from homonymy (e.g.
the Longman Dictionary of Contemporary English (LDOCE) (Proctor, 1978)). The senses
of polysemous words are considered to have emerged from the same sense and are thus
semantically related (e.g. tree in the sense of a plant and tree used to describe a diagram). In
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contrast, homonyms are considered to be accidental and historically as well as semantically
unrelated (e.g. bank in the sense of the institution compared to bank in the sense of river bank).
Given this difference, it can be expected that homonyms may link radically different word
senses with the same form. Thus, the impact of homonymy on a context-free distributional
space may be more extreme than that of polysemous words.

Polysemy can be divided into different types that may impact the context free models
differently: Polysemy can be caused by metaphorical mappings between conceptual domains
and thus affect entire groups of words (Lakoff and Johnson, 1980). For instance, abstract
phenomena, such as emotions, are often described in terms of physical phenomena (explode of
anger, boiling blood) (e.g. Kövecses, 2000). Such mappings are traditionally not recorded in
lexical resources, but have been studied by means of corpus annotation. I extract words with
metaphorical uses from the MIPVU corpus (Steen, 2010). Next to metaphorical mappings,
polysemy can be caused by metonymy. In contrast to metaphor, metonymy tends to connect
senses that are related more closely. For instance, the noun chicken can be used in the sense of
the bird, but also in the sense of a type of meat. Compared to metaphorical senses, metonymic
senses can be expected to share a higher number of usage patterns.

To distinguish the different phenomena involved in lexical ambiguity listed here, I apply
the following strategy: I use the difference in entries in the LDOCE dictionary to distinguish
homoymy from polysemy. To detect polysemous words involved in metaphorical mappings,
I exact metaphorically used nouns from the MIPVU corpus. Words marked as polysemous
in the LDOCE dictionary that are not annotated as metaphorical expressions in the MIPVU
corpus are counted as polysemous words that are likely to be caused by metonymy or other
phenomena. Words with only a single sense in the LDOCE are considered monosemous.
This strategy does not guarantee a completely accurate classification of polysemous words,
but it constitutes an approximation. Sampling from the different types of lexical ambiguity
described here increases the chances of a balanced representation of lexical ambiguity. I
present a validation of this approximated classification in Section 4.5.

Psycho-linguistic factors. Several lexical phenomena can potentially impact the behavior
of human annotators when confronted with individual lexical items. For example, people
can be expected to react differently to expressions they are highly familiar with than to
expressions that they hardly know. Similarly, words with concrete interpretations may have
a different effect from words with abstract interpretations, in particular when considering
semantic properties. The MRC psycholinguistic databased (Coltheart, 1981) captures such
factors by means of human ratings. It also includes information about the average age at
which a word tends to be acquired. While this by itself may not necessarily impact annotator
behavior, it is likely to be correlated with familiarity and possibly concreteness. For each of
the three aspects, I sample from different ranges of the ratings (or age information) to achieve
a balanced distribution.

All factors considered in the sampling process are summarized in Table 4.3. Each factor
either compasses a spectrum of numerical values (e.g. frequencies) or categories. To sample
from different ranges, I create three equally distributed bins over the entire vocabulary of
concepts that can then be used for sampling. In the case of categories, I simply sample from
the categories. To fill the positive and negative (or at this point undecided) classes of each
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property dataset, I iteratively draw concepts from the different bins associated with each
factor.

factor source bins impact
repr. annot.

distance to property vec-
tor

Wikipedia skipgram
model

3 based on dis-
tance

✓ ✓

frequency Wikipedia corpus 3 based on log
frequency

✓ ✓

ambiguity LDOCE dictionary,
MIPVU corpus

homonymy,
metaphor, pol-
ysemy (other),
monosemy

✓ ✓

concreteness MRC database 3 (base on
score)

✓

familiarity MRC database 3 (based on
score)

✓

age of acquisition MRC database 3 (based on
score)

✓

Table 4.3: Factors used for sampling.

4.5 Overview and Validation

In this section, I present an overview of the resulting dataset and a validation of the method
I used to categorize words according to different degrees of lexical ambiguity. Table 4.4
presents an overview of the resulting property datasets. The table shows the number of
candidate concepts per class. For several properties (e.g. roll and sweet), the number of likely
positive or likely negative cases was low. In such cases, most candidates were sampled from
the undecided class.

To validate the categorization of words into different types of lexical ambiguity, I test the
following assumtions:

• Semantic similarity metrics should reflect the different degrees of ambiguity. Senses of
homosemous words should have the lowest similarity; senses related by metonymy should
have the highest similarities.

• Homonyms and words with metaphorical senses should have the highest changes of
having both a concrete and an abstract sense. This shift should be less common among
metonymic senses.

I test these assumptions by means of the Princeton WordNet noun hierarchy and cosine
similaritty in the Wikipedia skip-gram model. To measure semantic similarity between
synsets, I use (a) the graph based-similarity measure developed by Wu and Palmer (1994)
(called wup) for the distance between synsets and (b) the average cosine distance of synset

68



4.6. SUMMARY

property pos neg pos/neg total

warm 20 28 118 166
hot 19 20 108 147
red 46 59 69 174
square 6 23 90 119
green 57 58 60 175
cold 18 22 81 121
sweet 28 1 145 174
blue 22 60 61 143
yellow 45 65 64 174
round 37 2 101 140
black 60 58 34 152
juicy 20 6 148 174
swim 57 61 62 180
roll 4 1 115 120
lay_eggs 61 61 32 154
fly 58 61 61 180
dangerous 63 61 17 141
used_in_cooking 59 60 60 179
wheels 54 16 45 115
wings 58 60 29 147
made_of_wood 59 12 81 152

Table 4.4: Overview of dataset size after sampling.

members in the distributional model. To approximate the cosine similarity of synsets, I extract
the monosemous lemmas from each synset and calculate their mean cosine distance in the
distributional model. To test the assumption about concrete and abstract senses, I check
whether the synsets associated with a word are subsumed under the abstract and the concrete
part of the WordNet noun hierarchy. In addition to these metrics, I also present the mean
number of WordNet synsets per word.

The results of the validation are presented in Table 4.5. All similarity measures confirm
the assumptions about semantic similarity between senses. The analysis of abstract and
concrete senses is also in line with the expectation. Furthermore, it can be observed that
homonyms and metaphorical words tend to have more WordNet synsets than words affected
by metonymy. The table also shows the results for monosemous words as a sanity check: As
expected, they tend to have the lowest number of WordNet synsets. If there is more than a
single synset, the semantic similarity between the synsets is considerably higher than for all
other ambiguity types.

4.6 Summary

In this chapter, I have presented core properties of the methodology used to diagnose semantic
properties in distributional models. These properties impose specific requirements on a
diagnostic dataset. A good diagnostic set for a particular semantic property should consist of
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type n syns wup sim min wup
sim

cos syns abstract-
concrete shift
(%)

homonymy 8.28
(6.97)

0.32
(0.16)

0.20
(0.18)

0.20
(0.20)

60

metaphor 8.32
(7.68)

0.35
(0.19)

0.24
(0.21)

0.24
(0.23)

45

metonymy (approx.) 3.01
(2.72)

0.53
(0.32)

0.48
(0.35)

0.57
(0.38)

24

monosemy 1.97
(2.43)

0.78
(0.32)

0.76
(0.35)

0.80
(0.31)

09

Table 4.5: Validation of ambiguity types by means of semantic similarity measures and
synset distribution in the Princeton WordNet hierarchy. Averages have been calculated on
nouns only (standard deviation in parentheses).

a diverse set of positive examples and have negative examples that are overall similar to the
positive examples. Distinguishing positive from negative examples should require identifying
the target property.

The methodological considerations inform the selection of properties and concepts for the
diagnostic dataset. I have used various lexical resources in combination with a context free
distributional model to collect candidates for positive and negative property-examples. The
candidates still need to be verified and annotated with property-concept relations (Part III).

Both the representation of concepts in a distributional model and the annotation process
may be impacted by various distributional and linguistic factors (word frequency, similarity
to confirmed positive examples, ambiguity, psycholinguistic factors). I consider these factors
when selecting the candidate concepts for annotation. Different degrees of ambiguity are
approximated by means of combining information from different linguistic resources. I have
presented a validation of this strategy by means of testing whether different semantic distance
measures can reflect the different degrees of ambiguity. The results are in line with the
assumptions, which indicates that the selected candidates should indeed cover a broad range
of lexical ambiguity.
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Part IV of the thesis focuses on the compilation of a diagnostic dataset following the
model proposed in Chapter 3 and the architecture proposed in Chapter 4 by means of crowd
annotation. The part is divided into three chapters: Chapter 5 introduces the annotation task
used to collect semantic judgments from crowd annotators. In addition to the task design,
it provides information about quality checks and worker managements, as well as different
annotation cycles. Chapter 6 presents an approach towards evaluating crowd annotations for a
semantic task that is expected to trigger disagreement. Rather than using disagreement as the
sole indicator of quality, the chapter proposes an approach which tests whether disagreement
follows expected patterns and uses a task-inherent, agreement-independent measure to estab-
lish annotation quality. The final chapter (Chapter 7) analyses to what degree the collected
dataset of properties, concepts, and relations is suitable for diagnostic experiments.





5. Annotation Task

5.1 Introduction

This chapter presents the design and procedure of the annotation task used to compile a
diagnostic dataset of properties, concepts, and their relations. The goal of the annotation
task is to annotate properties and candidate concepts with fine-grained semantic relations.
For instance, the dataset should contain information about the fact that lemons tend to be
yellow and that the property yellow is typical of lemons (e.g. yellow-lemon-typical_-
of_concept). The relations reflect different factors that may impact whether property-
information tends to be made explicit in corpus data based on theoretical and empirical
research (Chapter 3).

Annotating properties and concepts with fine-grained semantic judgments encompasses
several challenges: First and foremost, the task should cover a selection of properties and a
substantial number of concepts per property to ensure that the resulting datasets allows for
diagnostic experiments. Beyond this, a task design for a semantic annotation task should
anticipate semantic phenomena such as vagueness and ambiguity that may trigger disagree-
ment. To address these two challenges, I opt for crowd rather than expert annotation. In a
crowd annotation set-up, the task can be distributed over many annotators. Consequently,
it is possible to collect a large volume of data. In addition, it is possible to collect multiple
different judgements per annotation unit. The distribution of judgements for individual anno-
tation units could reflect different semantic phenomena in the data, such as ambiguity. While
lexical ambiguity is not the focus of this thesis, it is part of lexical data and likely to impact
distributional representations (Del Tredici and Bel, 2015, e.g.). Annotation units containing
ambiguity should trigger disagreement between annotators, while clear-cut units should lead
to agreement.

Crowd annotation entails that semantic judgments will be collected from non-experts.
This means that the task should be designed in such a way that it requires no training (apart
from simple instructions). Furthermore, the task should ideally consist of small annotation
units that can be judged quickly and based on intuition. Another consequence of crowd
annotation is having limited control over annotators; while crowd platforms allow for some
degree of selection, it is difficult to avoid collecting low-quality annotations. At the same
time, some crowd workers deliver high-quality annotations and become increasingly skilled
at the task over time and should be motivated to keep working on the task.

To address the specific challenges of using crowd annotation for a rather complex semantic
task, I take the following steps: To make the task accessible for untrained annotators, I
translate individual semantic relations to statements that describe a specific semantic relation
between a property and a concept (outlined in Section 5.2). To keep the cognitive load low, a
minimal annotation unit is defined as a property-concept-relation combination expressed as a
single statement. For instance, annotators are shown the following statement (expressing the
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combination of red, blood, and typical_of_property) and asked to indicate whether
they agree or disagree with it:

(12) “Blood” is one of the first things which come to mind when I hear “red” because
(a/an) blood is a typical example of things which are red.

The details behind the annotation process as well as strategies used to control the quality
are outlined in Section 5.3. The annotation was carried out in multiple rounds and included
modifications and adaptations of the task. This resulted in a number of different dataset
versions (outlined in Section 5.4). The full dataset, including information about the task
set-up can be downloaded from the following Github repository: https://github.

com/PiaSommerauer/PropertyConceptRelations. The repository allows to
trace changes in the task presentation between all annotation cycles.

5.2 Statement Generation

A core component of the annotation task is the translation of property-concept relations to
natural language sentences that can be judged by untrained crowd annotators, ideally based on
their intuition. Property-concept relations represent highly abstract ideas, such as for instance
the idea that property information is a highly implied aspect of conceptual knowledge and
shared across a larger semantic category. To make such semantic notions accessible for crowd
annotation, I translate each relation to a natural language statement about a specific property
and a specific concept. In this section, I present the statement templates for each semantic
relation. The templates presented in this section are a result of adaptations between multiple
annotation iterations (see Section 5.3). The publicly available dataset contains all versions of
the statements.

5.2.1 Impliedness

A fundamental notion of the hypothesis framework presented in Chapter 3 is that highly
implied information is usually not mentioned explicitly. This idea is represented by the
property-concept relation implied_category and translated to the following statement:

Relation: implied_category

Template: I know that (a/an) [concept] [property] as most or all other things similar to (a/an)
[concept] [property].

Positive example: I know that (a/an) dragonfly has wings as most or all other things similar
to (a/an) dragonfly have wings.

Negative example: I know that (a/an) wasp is green as most or all other things similar to
(a/an) wasp are green.

The template shown above is used to generate specific statements using properties and
concepts from the collected candidates. For each property type (e.g. part properties, perceptual
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properties, activities) the template is modified slightly to ensure that the statement sounds
relatively fluent.1 Examples illustrate an instance in which most crowd workers would be
expected to agree with the statement (positive example) and an instance in which they would
be expected to disagree (negative example).

5.2.2 Variability and Specification

A major factor hypothesized to lead to explicit property mentions is variability. If there is
variation for a certain type of property (e.g. color), it can be expected to be specified explicitly.
I distinguish between a limited (e.g. red/yellow/green apple, variability_limited),
and a wide, open-ended range of possible properties (variability_open).

Relation: variability_limited

Template: You can find (a/an) [concept] which [property]. [Property] is one of a few possible
[property-category] (a/an) [concept] usually has. There is only a limited range of possible
[property-category].

Positive example: You can find (a/an) meat which is juicy. Juicy is one of a few possible
qualities (a/an) meat usually has. There is only a limited range of possible qualities.

Negative example: You can find (a/an) cheese which is green. Green is one of a few possible
colors (a/an) cheese usually has. There is only a limited range of possible colors.

Relation: variability_open

Template: You can find (a/an) [concept] which [property]. [Property] is one of many possible
[property-category] (a/an) [concept] usually has. The range of [property-category] is almost
unlimited.

Positive example: You can find (a/an) insect which is black. Black is one of many possible
colors (a/an) insect usually has. The range of colors is almost unlimited.

Negative example: You can find (a/an) cabbage which is green. Green is one of many
possible colors (a/an) cabbage usually has. The range of colors is almost unlimited.

5.2.3 Illustration and Typicality

Some concepts are so closely associated with a property that they can be used as illustrations
of the property. This type of close relationship between property and concept is represented
by the relation typical_of_property. A similarly close, but not equivalent relationship
between property and concept can hold for properties that are very closely connected to the
concept and immediately come to mind when thinking of the concept. This relationship is
represented by the relation typical_of_concept. For concepts that serve as illustration
of the property, explicit property mentions in text are expected to be more likely than for
property-concept pairs in which the property merely has a strong association with the concept.

1In this section, I limit the discussion of statements to default templates. Variations used for part properties and
scalar properties are provided in Appendix .
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Relation: typical_of_property

Template: “[Concept]” is one of the first things which come to mind when I hear “[property]’
because (a/an) [concept] is a typical example of things which are [property]’.

Positive example: “Sugar” is one of the first things which come to mind when I hear “sweet’
because (a/an) sugar is a typical example of things which are sweet’.

Negative example: “Orchid” is one of the first things which come to mind when I hear “blue’
because (a/an) orchid is a typical example of things which are blue’.

Relation: typical_of_concept

Template: “[Property]” is one for the first things which come to mind when I hear “[concept]’
because [property] is one of the typical [property-category] of (a/an) [concept]’.

Positive example: “Juicy” is one for the first things which come to mind when I hear “peach’
because juicy is one of the typical qualities of (a/an) peach’.

Negative example: “Hot” is one for the first things which come to mind when I hear “flow-
erpot’ because hot is one of the typical temperatures of (a/an) flowerpot’.

5.2.4 Afforded Actions

Certain properties are particularly important for concepts because they enable actions or uses.
This property-concept relationship is represented by the relation affording _activity.

Relation: affording_activity

Template: I know that [property] is necessary for many things (a/an) [concept] does or is
used for.

Positive example: I know that having (a/an) wings is necessary for many things (a/an) gull
does or is used for.

Negative example: I know that being blue is necessary for many things (a/an) buzzard does
or is used for.

A number of properties express activities themselves directly (e.g. swim, roll). Activities
that instances of a concept usually engage in are expected to arise from distributional data
(afforded_usual). In contrast, activities that instances of a concept are able do perform
but do not usually engage in are not expected to be mentioned systematically enough to arise
from co-occurrence patterns (afforded_unusual).

Relation: afforded_usual

Template: I know that all or most [concept] [property] regularly or are used for [property]
regularly.
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Positive example: I know that all or most crow(s) fly regularly or are used for flying regu-
larly.

Negative example: I know that all or most lorry(s) fly regularly or are used for flying
regularly.

Relation: afforded_unusual

Template: All or most [concept] can [property]/be used for [property]. This is not what they
normally do or are used for.

Positive example: All or most bulldog(s) can swim/be used for swimming. This is not what
they normally do or are used for.

Negative example: All or most ship(s) can swim/be used for swimming. This is not what
they normally do or are used for.

5.2.5 Negative relations

To facilitate the annotation process, I include a range of negative relations. Annotators are
likely to have different personal thresholds for indicating that a property cannot apply to
a concept. The range of negative relations includes rare property-concept combinations
(rare), unusual property-concept combinations (unusual) and impossible combinations
impossible).

Relation: rare

Template: I think (a/an) [concept] can be [property], but this is rare or uncommon.

Positive example: I think (a/an) cheese can be sweet, but this is rare or uncommon.

Negative example: I think (a/an) notebook can be square, but this is rare or uncommon.

Relation: unusual

Template: Usually, (a/an) [concept] is not [property], but there could be a highly unusual
situation in which (a/an) [concept] is [property].

Positive example: Usually, (a/an) corncob is not red, but there could be a highly unusual
situation in which (a/an) corncob is red.

Negative example: Usually, (a/an) milk is not cold, but there could be a highly unusual
situation in which (a/an) milk is cold.

Relation: impossible

Template: I think it is impossible for (a/an) [concept] to [property]/be used for [property].

Positive example: I think it is impossible for (a/an) pig to lay_eggs/be used for laying eggs.

Negative example: I think it is impossible for (a/an) tea to be sweet.
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5.2.6 Creative and Metaphorical Properties

Finally, the task includes the possibility to mark metaphorical or creative language use
(creative). The intention behind this relation is to detect clear cases of non-literal combi-
nations. While such combinations may constitute interesting data for research on non-literal
language use, they pose the risk of introducing noise in a diagnostic experiment. The example
involving the pair green-newspaper shown below illustrates such an instance: In this state-
ment green can indicate a political orientation rather than a visible color; while newspapers
can have political orientations, they are unlikely to have a visible, green color.

Relation: creative

Template: I could say (a/an) [concept] is [property], but I would most certainly not mean it
literally.

Positive example: I could say (a/an) newspaper is green, but I would most certainly not
mean it literally.

Negative example: I could say (a/an) taxicab has wheels, but I would most certainly not
mean it literally.

5.3 Annotation Task and Process

This section outlines the details of the annotation task design, annotation process and partici-
pant management.

Task At its core, the annotation task is framed as a binary decision task: Given a statement,
participants are asked to decide whether they agree or disagree. Participants are shown one
statement at the time, accompanied by two examples statements; one illustrating a statement
they are most likely to agree with and one illustrating a statement they are most likely to
disagree with. An example can be seen in Figure 5.1. The specific examples shown with
each annotation unit can be found in the dataset repository. Participants were instructed to
read statements carefully and look up words they did not know. A single batch of annotations
completed by a participant consisted of around seventy statements and was estimated to take
about seven minutes in total (each sentence should take between seven and ten seconds).

Annotation platform and participant recruitment The annotation task was set-up using
Lingoturk; a tool designed for setting up different types of (psycho-)linguistic tasks developed
by Pusse et al. (2016). The tool offers easy connection to commonly used participant
recruitment platforms, such as Amazon Mechanical Turk or Prolific. For this task, Prolific
was chosen.2 Peer et al. (2017) show that the annotation quality of annotators recruited via
Prolific is higher than for Amazon Mechanical Turk workers. The platform encourages fair
payment and asks researchers to pay participants based on the time they estimate for a task
rather than per annotated item.

2https://www.prolific.co/
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Figure 5.1: Example of an annotation unit shown to annotators in the task interface.

Initially, the task was open to all participants who indicated fluency in English. At a later
stage, I decided to limit the task to annotators who had previously delivered high-quality work
using Prolific’s ‘allow-list’ option. Participants were paid based on UK minimum wage per
hour regulations. For each batch of annotation units, the duration and reward were estimated
based on the number of statements in the batch and the duration of previous annotation
batches. Each annotation batch was annotated by ten workers.

Quality control To control whether annotators understood the task and delivered serious
responses, I used two quality control strategies: check questions and task-inherent consistency
checks. This section explains how these strategies were used.

Each batch contained two statements containing clear and unambiguous property-concept
combinations (see Example 13). Competent speakers of English who read the instructions
should all give the same answer to these questions. While such checks can provide first
indications, they also encompass disadvantages: Checks have to be updated continuously, as
the same annotator can work on several annotation batches and may notice repeated questions.
In the worst-case scenario, attention check questions are identified by participants and shared
among crowd workers to avoid being identified as untrustworthy. Furthermore, attention
checks only provide information about two out of around seventy judgments.

(13) “Pink” is one for the first things which come to mind when I hear “grass’ because
pink is one of the typical colors of (a/an) grass’.

To address the limitations of check questions, I resorted to using task-inherent consistency
checks. The underlying assumption behind these checks was that annotators should not give
contradictory judgments. If they indicate that a property applies to most or all instances of a
concept, they should be consistent in their judgments. Thus, they should not click on ‘agree’
for any of the statements expressing a negative relation between the same property-concept
pair. As the task may contain ambiguous or difficult instances, a single contradiction is
not necessarily a sign of bad quality. Multiple contradictions, however, can be seen as an
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indication of low-quality work. This is particularly obvious if property-concept pairs did not
trigger contradictions in the majority of annotators.

The two control mechanisms were used as follows: In a first step, I inspected answers of
participants who failed both attention checks or delivered a higher number of contradictory
responses than most other annotators on the same batch. In cases in which multiple responses
could not be justified (e.g. based on ambiguous instances in the annotation units), I rejected
the submission via Prolific and did not pay the participant. The task was then reassigned to
another annotator. This only occurred in rare cases.

In a second step, I recorded attention check fail rates and contradictions of annotators
over all batches that annotators had worked on. Once I had recruited a group of participants
who had worked on multiple batches and delivered high-quality work, I added them to an
‘allow-list’. Participants with high fail- and contradiction rates were removed from the list.
Subsequent annotation batches were only made available to participants on the allow-list.

5.4 Dataset Versions

The final dataset is the result of multiple iterations of annotations. Each iteration was followed
by an assessment of the task and data and led to adaptations. In this section, I present
an overview of the annotations. Overall, the dataset is a result of six annotation cycles
(summarized in Table 5.1).

iter. task dataset properties

1 binary/scale pilot blackbox properties with at least 20
concepts in the CSLB norms

2 statement judgment discarded red, round, roll

3 statement judgment diagnostic dataset red, round, roll
4 statement judgment diagnostic dataset wheels, made_of_wood, hot,

square, dangerous, lay_eggs,
yellow, fly, sweet, black

5 statement judgment diagnostic dataset wings, warm, used_in_cook-
ing, swim, juicy, green

6 statement judgment diagnostic dataset warm, hot, cold

Table 5.1: Overview of annotation cycles.

Pilot blackbox The first version of the dataset was compiled for a pilot experiment on word
embedding representations (see Chapter 8).3 This pilot dataset consists of properties and
concepts derived from the CSLB feature norms (Devereux et al., 2014).

We select features from the CSLB norms that are associated with at least 20 concepts.
In an exploratory experiment, we count all concepts for which the target feature is listed as

3The study and dataset collection were conducted in collaboration with Antske Fokkens. The text in this section
is taken from our jointly written paper (Sommerauer and Fokkens, 2018).
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positive examples and all other concepts as negative examples. However, the fact that people
did not list a property does not necessarily mean that a given concept is a negative example of
it. For instance: falcon is described by is_a_bird, but not by is_an_animal.

For proper evaluation, the CSLB dataset should be extended with verified negative
examples. We apply two methods to add both positive and (verified) negative properties
to CSLB. First, we select properties that necessarily imply the target property (e.g. is_a_-
bird implies is_an_animal) or necessarily exclude the target property (e.g. is_food almost
certainly excludes has_wheels). We both manually inspect the extended sets of positive and
negative examples per selected property to exclude remaining noise independently, resolving
disagreements after discussion.4

The resulting dataset has the disadvantage that negative examples largely consist of
the same specific categories, e.g. negative examples of has_wheels are food, animals and
plants. Based on these examples, we cannot tell whether the classifier performs well because
embeddings encode the property of having wheels or because it can distinguish vehicles from
food, animals and plants. We therefore need to expand the dataset so that it includes diverse
negative and positive examples and preferably positive and negative examples that are closely
related in semantic space.

Ultimately, we want to verify and increase the entire dataset and distinguish between
things that always or typically have a property (e.g. has_wheels-bike, is_yellow-banana),
things that can have a property (e.g. is_pink-bikini, made_of_metal-plate) and things that do
normally not have a property (e.g. does_kill-grape, is_pink beer). We set up a crowdsourcing
task in which we ask participants whether a property applies to a word. Possible answers are
yes, mostly, possibly and no.

This crowdsourcing method has currently been applied to a selection of property-concept
pairs that were labeled as false-positives by at least one of our approaches in the initial setup.
In addition, we extend the property-concept pairs given to crowd workers by collecting the
nearest neighbors of the centroid (calculated over positive examples of a property) and a
number of seed words. We aim to (1) identify negative examples that have a high cosine
similarity to positive examples in the dataset and (2) include a broader variety of words.
This nearest-neighbors strategy explicitly aims at collecting words that are highly similar to
positive examples of a property but are not associated with it. For instance, in order to extend
the concept set for the property has_wheels, we used the seed words car, sledge, and ship.5

In the experiments reported in this study, we only consider properties that clearly apply to
a concept as positive examples (the yes and mostly cases) and properties that clearly do not
apply as negative examples, leaving disputable cases and the cases that possibly apply for
future work. We manually checked cases of disagreement in the crowd data and selected or
removed data based on these criteria.6

4All annotations, guiding principles as well as notes about resolving discussions can be found at https:
//cltl.github.io/semantic_space_navigation.

5The details about our selection and full lists of seed words are provided with our code.
6Some differences in judgment are clearly the result of lack of knowledge (e.g. not knowing a something is an

animal). The original outcome of the crowd and final resulting test are provided on the Github repository.
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Diagnostic dataset The diagnostic dataset is partially based on existing annotations from
the pilot dataset as well as the quantified McRae norms dataset compiled by Herbelot and
Vecchi (2016). The information about positive and negative examples of properties provided
in these datasets was used to limited the ranges of possible property-concept relations in the
annotation of the diagnostic dataset.

The diagnostic dataset was annotated in 5 annotation cycles (iteration 2-6). Iteration 2 only
encompasses three properties and acted as a pilot. The responses collected in this iteration
indicated that crowd annotators had considerable difficulties with the task. As a result, I
revised the statements, instructions, and examples shown to participants. From iteration 3,
participant responses indicated that the task was doable. Each iteration was followed by an
update of examples and small adaptations required by irregularities (e.g. fluency issues in the
template generation). In addition, the check questions were updated. From iteration 5, highly
abstract or difficult terms were excluded from the concepts, as such terms posed considerable
difficulties to the annotators.7 The sole purpose of iteration 6 was to complete the entire
spectrum for scalar heat-properties; each example of either one of the properties cold, warm,
and hot was annotated for all other heat properties.

5.5 Summary

This chapter presented the annotation task used to collect the diagnostic dataset. I have
described how property-concept-relation combinations were translated to statements crowd
annotators without expert knowledge can judge relatively quickly. Furthermore, I have
provided details on how participants were recruited via the online Prolific and introduced the
strategies I used to monitor crowd annotators and control the quality of annotations. Finally, I
have presented an overview of the different annotation cycles used to compile the dataset.

7The remaining concepts were filtered by Antske Fokkens and me.
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6. Evaluating Crowd Annotations

6.1 Introduction

The crowd annotation task presented in the previous chapter (Chapter 5) constitutes a difficult
semantic task that cannot be expected to lead to perfect agreement between annotators. The
task encompasses concepts that are ambiguous (e.g. crane) or vague (e.g. color boundaries
such as yellow versus brown) and may lead to different responses depending on participants’
knowledge about specific aspects of conceptual knowledge (e.g. yellow tomatoes are less
well-known than red tomatoes, but they exist). Furthermore, the negative property-concept
relations (rare, unusual, impossible) have specifically been designed to accommodate
variation between participants. Thus, disagreement is not only expected, but can constitute a
valuable signal for various semantic phenomena.

This chapter presents an evaluation of the crowd annotation task that aims to consider
disagreement as a valuable signal of semantic phenomena, rather than an indication of
low quality. The chapter consists of two parts: The first part of the chapter presents an
evaluation of the crowd annotations compared to expert annotations with respect to expected
and unexpected disagreement (Section 6.2). This part of the chapter is based on the following
publication:

Pia Sommerauer, Antske Fokkens, and Piek Vossen. 2020. Would you describe a leopard
as yellow? evaluating crowd-annotations with justified and informative disagreement. In
Proceedings of the 28th International Conference on Computational Linguistics, pages
4798–4809, Barcelona, Spain (Online). International Committee on Computational Lin-
guistics

The second part of the chapter focuses on individual property-concept relations (Sec-
tion 6.3). The aim of this part is to assess how well crowd annotators understood the intention
of and distinction between different types of relations. The annotations used for both eval-
uations presented in this chapter are based on a subset of all annotations collected for the
diagnostic dataset. Specifically, they are taken from iteration 3 and 4 (see Chapter 5 for details
about the annotation iterations).

The results indicate that the crowd annotations follow expected behavior; disagreement
occurs in instances where it is justified by the data. Agreement is thus not suitable as the
sole indicator of annotation quality. Instead, the evaluation against expert annotations shows
that a task-specific quality based on annotation coherence yields more reliable results. The
evaluation on the level of relations indicates that the crowd annotations provide accurate
results for several property-concept relations. However, some of the more fine-grained
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distinctions could not be made by the annotators. This should be taken into account in further
analyses.

6.2 Evaluation 1: Justified and Informative Disagreement

Would1 you say leopards are yellow? Most likely, some people would while others would not.
Both interpretations are valid, as the interpretation depends on a person’s boundaries for the
properties ‘yellow’ and ‘brown’. Selecting only one judgment would disregard the vagueness
of the expression, a phenomenon at the heart of lexical semantics. At the same time, most
people would probably agree that wine can be red without having to think about it. A high
number of semantic annotation tasks is characterized by unclear, difficult, ambiguous and
vague examples (Erk et al., 2003; Kilgarriff and Rosenzweig, 2000). Annotation, in particular
when distributed among a crowd, has the potential of capturing different interpretations,
conceptualizations and perspectives and can thus provide highly relevant semantic information.
Existing evaluation and label extraction methods, however, still heavily rely on agreement
between annotators, which implies a single correct interpretation. Finished datasets rarely
provide indications about difficulty and ambiguity on the level of annotated units.

The explanatory power of NLP experiments that aim to evaluate or analyze models de-
pends on the informativeness of the data. This is particularly relevant for experiments which
specifically aim to understand models better, such as the tradition of diagnostic experiments
(Belinkov and Glass, 2019). Traditional error analyses could also benefit substantially from
test sets which contain information about phenomena with a likely impact on model perfor-
mance. Furthermore, knowing whether model-errors are similar to human disagreements can
yield important insights about models. For instance, an analysis of natural language inference
models shows that classifiers do not necessarily capture the same type of ambiguity and
uncertainty as reflected in the annotations (Pavlick and Kwiatkowski, 2019). Error analyses
often require manual annotation and tend to focus on small and not representative subsections
of test sets (Wu et al., 2019). We argue that the behavior of human annotators can provide
rich information which should be exploited, rather than reduced to single labels. Information
about (dis)agreement is a by-product of the original annotation effort and thus comes for free.
It can form the basis of an error analysis or, in the case of our data, should be used to draw
informative conclusions from diagnostic experiments. Such experiments crucially depend on
the quality and informativeness of the underlying data (Hupkes et al., 2018).

In this section, we present an approach to crowd-annotation for a diagnostic dataset which
attempts to tackle these limitations. The dataset is meant to test which semantic properties are
captured by distributional word representations. The task is designed to trigger fine-grained
semantic judgements of potentially ambiguous examples. The behavior of ambiguous words
in distributional semantic models is not well understood and thus particularly interesting
(Sommerauer and Fokkens, 2018; Yaghoobzadeh et al., 2019; Del Tredici and Bel, 2015). We

1The text in this section is based on a joint publication with Antske Fokkens and Piek Vossen Sommerauer et al.
(2020). The evaluation framework and experimental set-up was designed collaboratively implemented by me. The
paper was written in collaboration. The results from the original paper have been updated and extended. The text has
been updated accordingly. The structure and text from the original paper have been adapted to fit into the framework
of this thesis.
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investigate to what extent existing and new quality metrics indicate annotation accuracy on
the one hand and ambiguity and difficulty of annotation units on the other hand. We evaluate
our task from three perspectives: (1) comparison against an expert-annotated gold standard,
(2) a task-specific coherence metric independent of agreement and (3) evaluation in terms of
inter-annotator agreement metrics compared to predefined expectations about agreement and
disagreement. In particular, we aim to investigate (1) how we can exploit the strengths and
weaknesses of various suggested metrics to select and aggregate labels provided by the crowd,
(2) to what degree disagreement among workers occurs in cases where it is expected and
legitimate and (3) which metrics are suitable for detecting annotation units with legitimate
and informative disagreement.2

Disagreement has been shown to indicate ambiguous cases when measured with the
CrowdTruth framework (Aroyo and Welty, 2014; Dumitrache et al., 2018). However, we are
not aware of work which compares different (dis)agreement and difficulty metrics. To the
best of our knowledge, there is no study which tests how well different metrics can be used
to identify ambiguous annotation units in a set of units annotated in terms of expected and
legitimate disagreement. We show that the metrics we use give complementary insights and
can be used to filter and aggregate labels in a way that produces high-quality annotations.
Despite a relatively low inter-annotator-agreement, we show that worker behavior follows our
expectations about agreement and disagreement and that high-quality labels can be extracted
from the annotations, in particular for cases where we expect worker agreement.

The remainder of this section is structured as follows: We provide a short description
of the quality requirements of our use-case (Section 6.2.2) and the annotation task designed
for it (Section 6.2.3). We present our expert-annotated gold standard in Section 6.2.4 and
different quality metrics in Section 6.2.5. The results of our experiments are described in
Section 6.2.6, followed by a discussion and conclusion.

relation example

typical_of_concept “Spicy” is one for the first things which come to mind when I
hear “chili pepper’ because spicy is one of the typical tastes of
(a/an) chili pepper’.

typical_of_prop-
erty

“Feather” is one of the first things which come to mind when I
hear “light’ because (a/an) feather is a typical example of things
which are light’.

affording_activity I know that having (an/an) blade is necessary for many things
(a/an) razor does or is used for.

variability_open You can find (a/an) t-shirt which is white. White is one of many
possible colors (a/an) t-shirt usually has. The range of colors is
almost unlimited.

rare I think (a/an) wine glass can is made of plastic, but this is rare
or uncommon.

impossible I think it is impossible for (a/an) corpse to be alive.

Table 6.1: Examples of statements expressing semantic relations.

2The crowd and expert annotations are available at this repository: https://github.com/cltl/SPT_
crowd_data_analysis
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Vague property The property is vague. Usually, (a/an) leopard is not yellow, but
there could be a highly unusual situation in which (a/an) leopard
is yellow.

Ambiguous property The property is ambiguous and not disambiguated in the context
of the concept and description. You can find (a/an) chutney which
is hot. (A/an) chutney is usually either hot, a bit more or less hot
or the opposite of hot.

Ambiguous concept The concept is ambiguous and not disambiguated in the context
of the property and description. I know that (a/an) trumpeter
can fly/be used for flying as most or all other things similar to
(a/an) trumpeter fly.

Odd pair The combination of the property and concept is strange and
confusing. This is always the case, regardless of the description.
You can find (a/an) recliner which is square. Square is one of a
few possible shapes (a/an) recliner usually has. There is only a
limited range of possible shapes.

Odd triple The combination of the property, concept and description is
strange and confusing. I know that being yellow is necessary
for many things (a/an) buttercup does or is used for.

Differences in conceptualization The description asks the participant to place the concept in a con-
ceptual system. The answer depends on the conceptual system
of the participant. I know that (a/an) arrow can fly/be used for
flying as most or all other things similar to (a/an) arrow fly.

Specialized knowledge Answering this correctly requires specialized knowledge. It is
likely that not all workers are aware of this. I think (a/an) carrot
can be red, but this is rare or uncommon.

Imagination This depends on how creative and imaginative a participant is.
This type of disagreement only matters for confusions between
negative relations (e.g. rare, unusual, impossible). I think there
is a shovel which can roll/be used for rolling, but this is rare or
uncommon.

Table 6.2: Expected reasons for worker disagreement.
.

6.2.1 Related Work: Disagreement in Annotation Tasks

Recent annotation studies recognize that ambiguity, vagueness and varying degrees of diffi-
culty are inherent to semantic phenomena (Dumitrache et al., 2019; Aroyo and Welty, 2015;
Erk et al., 2003; Kairam and Heer, 2016; Poesio et al., 2019; Pavlick and Kwiatkowski, 2019).
Pavlick and Kwiatkowski (2019) demonstrate that the fundamental task of Natural Language
Inferencing contains large proportions of instances with multiple valid interpretations and ar-
gue that this phenomenon is central to the task rather than an aspect which can be disregarded.
Herbelot and Vecchi (2016) show that even experts disagree on a difficult semantic annotation
task and that interpretations are likely to vary due to differences in conceptualizations, which
are in themselves justified and cannot simply be disregarded as ‘mistakes’.

Despite the central nature of phenomena triggering disagreement in annotation tasks, we
are not aware of evaluation methods that do not mainly rely on agreement. Traditionally,
annotations by a few annotators who worked on the same units are evaluated in terms of
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Kappa scores (usually Cohens’s kappa) and tasks with varying workers annotating the same
units (usually crowd tasks) in terms of Krippendorff’s alpha (Artstein and Poesio, 2008). The
CrowdTruth framework suggested by Aroyo and Welty (2014) and Aroyo and Welty (2015)
offers a more fine-grained view by distinguishing the levels of workers, units and labels,
rather than reducing the entire task to a single score. The goal is to distinguish meaningful
disagreements (i.e. agreements by reliable annotators) from noise (i.e. disagreement or
agreement by generally unreliable annotators). The framework provides scores for workers,
annotation units (clear units receive a high score, units triggering disagreement between
reliable annotators a low score), labels and associations between units and labels. The scores
can be used to aggregate labels and for identifying unclear annotation units, as for instance
shown by (Dumitrache et al., 2015) and (Dumitrache et al., 2019). Other approaches attempt
to discover disagreeing but valid interpretations in annotations based on clustering (Kairam
and Heer, 2016) and Gaussian modeling (Pavlick and Kwiatkowski, 2019). While these
approaches provide valuable insights, we focus on transparent and simple methods for quality
assessment which do not require a large volume of data.

6.2.2 Quality Requirements for a Diagnostic Dataset

The purpose of the annotation task is to compile a dataset of properties and concepts that
allows for diagnostic experiments on word embedding representations. Annotations should
be provided by a crowd, rather than experts, as we are interested people’s general perception
rather than expert judgments. Though we focus on a task with these specific characteristics,
we believe that the general approach presented in this chapter can also yield important insights
in other, perhaps more traditional annotation scenarios.

Experiments in the tradition of model analysis require informative and high-quality data,
as they aim to discover general tendencies about what kind of information models can capture.
The diagnostic dataset proposed in this thesis is meant to test whether a semantic property
(e.g. ‘flying’) is encoded by embedding representations or not. This can be investigated by
testing whether positive (e.g. ‘seagull’, ‘airplane’, ‘bee’) and negative candidate concepts
(e.g. ‘penguin’, ‘train’, ‘ant’) can be distinguished purely based on their embedding (see
Chapter 4). The examples should not only be used to test whether a specific semantic property
is encoded in embeddings, but, beyond this, help to uncover underlying factors determining
whether a property is reflected in a distributional representation of a concept or not. Therefore,
the concept-property pairs should be annotated with semantic relations reflecting various
linguistic factors (see Chapter 3). Each concept-property pair can be connected by one or
more of a total of ten relations (for instance expressing types of typicality or whether there can
be variation in instances of concepts). The semantic relations can be grouped with respect to
the subset of concept-instances a property applies to (most to all, some, or few to no instances
of a concept). This enables diagnostic experiments with positive and negative examples.

We encountered the problem of annotation evaluation given expected disagreement while
compiling this dataset as it contains a high number of ambiguous instances and instances of
varying degrees of difficulty, for which disagreement can be valid and meaningful. In an ideal
scenario, our analysis of annotations can (1) provide an overall indication of annotation quality
which does not purely rely on agreement and (2) distinguish different types of disagreement.
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At the most coarse-grained level, it should distinguish justified disagreement from noise
(caused by mistakes or spammers).

6.2.3 Characteristics of the Annotation Task

The goal of the annotation task is to annotate property-concept pairs with relations. To
make the task simple and suitable for a crowd of untrained workers, we turned it into a
binary-decision task. This means that a single annotation unit consists of a property-concept-
relation triple. This results in ten annotation units per concept-property pair. As the relations
have rather abstract names, we translate them to natural language statements describing a
property and a concept. The following statement is an example of a description expressing
the property-concept-relation triple black-rhino-variability_limited: You can find
(a/an) rhino which is black. Black is one of a few possible colors (a/an) rhino usually has.
There is only a limited range of possible colors. Participants are asked to indicate whether
they agree with a given statement about a property and a concept. More example statements
are listed in Table 6.1.3

To avoid triggering random answers, we encourage participants to look up words they do
not know. Each statement is introduced by a short instruction sentence and an example of the
same relation and property-type which would most likely trigger the response ‘agree’ and
which would trigger ‘disagree’.

We used the freely available Lingoturk software (Pusse et al., 2016) to set up an annotation
environment and distributed the task via the recruitment platform Prolific.4

We split the dataset into batches of around 70 descriptions. A worker who is proficient
in English would need about 10 minutes per batch. While some statements may be difficult
to judge and therefore take more time, most are expected to be rather intuitive and easy to
answer. Annotators were paid based on the UK minimum wage. Each unit was annotated by
10 workers. To enable regular quality checks, we always include the full range of descriptions
associated with a property-concept pair in the same batch.

This enables us to check whether answers contradict each other. It has the disadvantage
that the diversity of property-concept pairs in a batch is low.

We monitored the quality of the annotations during the annotation process and used inter-
mediate worker evaluations to ‘recruit’ good annotators. Rather than rejecting low-quality
submissions, we developed a ‘allow-list’ approach (please refer to Chapter 5 for details).
Prolific enables researchers to distribute studies exclusively among a pre-selected group of
workers. We test whether workers contradict themselves in their answers (explained in more
detail below), for instance by judging a property as typical of a concept and at the same time
stating that it is unusual of the concept. As we do not know how much legitimate disagreement
could be expected in a single batch, we decide to rely on an agreement-independent metric
rather than inter-annotator agreement.

3The entire set of input data can be found at this repository: https://github.com/cltl/SPT_
annotation

4https://www.prolific.co/
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6.2.4 A Gold Standard for Accuracy and Expected Agreement

We establish a gold standard to evaluate (1) the accuracy of annotations extracted based
on different quality metrics and (2) the ability of different metrics to identify justified and
potentially meaningful disagreement. The authors of the paper annotated a subset of already
annotated units. The units for expert annotation were selected from units with high, medium
and low agreement. Agreement was established by calculating Krippendorff’s alpha on the
level of concept-property pairs (each pair has up to ten units).5 The inter-annotator agreement
before discussion was 0.51 and 0.72 after discussion (averaged pairwise Cohen’s kappa).
We count all units in which agreement between experts could not be reached as units with
expected disagreement. These units (23 in total) are excluded from the gold standard for label
accuracy, as there are no incorrect answers in these cases.

We also indicated whether we expected the crowd to disagree for legitimate reasons.
Examples of such disagreements are shown in Table 6.2. We identify different reasons for
expected disagreement, such as vagueness in the property, ambiguity in either the concept or
the property, odd property-concept combinations. We used these categories to facilitate the
expert annotation process. While they served as a helpful tool for annotation and discussion,
the inter-annotator agreement with respect to the disagreement categories remained low. It has
to be considered that in most cases, various categories interact. When discussing annotations,
we could frequently reach agreement about the subset of disagreement categories involved in
an annotation unit, but disagreed about where the emphasis should be placed. In our current
analysis, we simplify and distinguish the following three categories: agreement, possible
disagreement and almost certain disagreement. Agreement was chosen for cases where all
annotators expected agreement, possible disagreement for mixed cases and disagreement for
cases where all annotators indicated they expected disagreement. We argue that taking these
unions is most sensible, as multiple perspectives are necessary to discover possible reasons
for disagreement. In total, we expect agreement for 49 units, possible disagreement for 48
and almost certain disagreement for 57 units. For 23 of the 57 units, a gold label could not be
reached in expert discussion.

6.2.5 Quality Metrics

We experiment with three types of quality metrics: We consider traditional inter-annotator
agreement, quality scores in the CrowdTruth framework and our own, task-specific coherence
metric. The metrics assess different aspects of the annotated dataset, as explained below.

Traditional Inter-Annotator-Agreement

Traditionally, annotation tasks are assessed in terms of inter-annotator agreement (Artstein and
Poesio, 2008). Crucially, inter-annotator agreement metrics should go beyond simple ratios
and account for the possibility of agreement by chance. Widely used scores which do this are
Cohen’s Kappa (suitable for pair-wise assessment of annotators) and Krippendorff’s alpha

5For some pairs, some relations were excluded based on existing annotations from Herbelot and Vecchi (2016).
This resulted in a set of 154 units (containing 19 property-concept pairs and 11 different properties).
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(suitable for a large number of annotators who are not consistent across the set). Both scores
range between -1 and 1. Artstein and Poesio (2008) argue that Computational Linguistics
tasks should require an agreement of 0.8 (while agreement above 0.67 is generally considered
acceptable for some tasks). Such a strict threshold would not do justice to our task, which
is characterized by expected ambiguity and disagreement. Traditionally, these metrics are
used to give indications about the quality of the full set. In contrast, we use them directly to
investigate whether expected disagreement indeed leads to lower alpha scores.

CrowdTruth Metrics

The CrowdTruth framework was specifically designed to account for ambiguity and different
levels of difficulty in a crowd-annotation setting. Beyond accounting for variation in the data,
it also considers that crowd workers may have different abilities and that labels used in the
annotation process can vary with respect to clarity. Rather than using a single aggregated score,
the framework proposes metrics for workers, annotation units, labels and association strength
between units and labels. Each task-component (workers, units and labels) is represented by
a vector. The scores are calculated in terms of cosine similarities (expressing agreement) and
weighted. For example an annotation unit on which most workers disagree receives a lower
weight, just like a worker who frequently disagrees with other workers. Each score can take a
value between 0 and 1. Dumitrache et al. (2019) show how the individual scores can be used
for label identification and the identification of ambiguous units. The unit-quality-score (uqs)
measures the weighted worker agreement on a particular unit and can be used to identify
unclear or difficult units. The unit-annotation score (uas) measures the weighted agreement
on a particular label for a unit. This indicates which label should be selected based on the
analysis. Finally, we experiment with the worker quality score (wqs) for filtering low-quality
workers.6

Task-Specific Metric: Contradiction Ratio

We define a metric specific to our task which assesses the coherence of worker judgments
independent of agreement. We assume that reliable workers should not contradict themselves
in the judgments of units associated with a single property-concept pair. For example, stating
that a fly is typical of penguin and that it is impossible that penguins fly would count as
a contradictory annotation. The semantic relations associated with a single pair can be
divided into relations expressing that a property applies to all or most concept-instances, some
concept-instances or few to no concept-instances. Contradictory annotations are annotations
which state that relations in the most/all-category and the few-none category are true.
We calculate a contradiction rate by dividing all observed contradictions by all possible
contradictions for a property-concept pair. This can be done for the annotations of an
individual worker or all annotations for a pair. The contradiction rate for the worker can be
seen as an indication of worker quality (the lower the better). The contradiction ratio on the
level of a pair can be seen as an indication of the difficulty of a property-concept combination
(the higher the more difficult).

6We use the scores as they are defined in the appendix of (Dumitrache, 2019).

92



6.2. EVALUATION 1: JUSTIFIED AND INFORMATIVE DISAGREEMENT

General Quality Metric: Time

Annotation platforms such as Prolific and MTurk indicate how much time participants spent on
a task. These time indications can be used to identify participants who may have provided low-
quality answers. According to Prolific’s guidelines for accepting and rejecting submissions7,
submissions by participants who completed the task ‘exceptionally fast’ (i.e. 3 standard
deviations below the mean) can be rejected. We evaluate to what extent comparatively fast
task completion is an indication of low quality based on the time information provided by
Prolific and captured by the Lingoturk platform.

6.2.6 Evaluation Against the Gold Standard

In this section, we present the results of our analysis. Section 6.2.6 presents a general overview
and statistics about the collected annotations. We show the results of our evaluation against the
gold standard in terms of label accuracy, followed by our evaluation with respect to expected
agreement and disagreement. In Section 6.2.7, we evaluate how well different quality metrics
are able to identify units with legitimate disagreement.

data total iter. 3 iter. 4 iter. 4

annotations 195619 20971 41447 133201
properties 13 3 3 10
pairs 1935 425 426 1501
workers 1068 285 547 455
units 17907 4105 4094 13212
workers per unit 10.92 5.11 10.12 10.08
mean number of con-
cepts per prop.

148.85 141.67 142.00 150.10

mean number of annota-
tions per worker

183.16 73.58 75.77 292.75

iaa_label 0.31 0.23 0.21 0.36
iaa_collapse_neg 0.33 0.24 0.26 0.38
iaa_merged 0.37 0.22 0.24 0.43
contradiction_rate_-
mean

0.04 0.09 0.08 0.02

Table 6.3: Overview of the dataset in total and by annotation iteration (iteration 1 and 2 are
not part of the diagnostic dataset).

.

Overview

Table 6.3 shows the overview of the current state of our dataset. The table shows statistics
for three intermediate versions and the total dataset. In total, we have collected almost
200 000 annotations for almost 2000 property-concept pairs covering 13 different semantic
properties with on average 150 associated concepts each. On average, each worker annotated

7The guidelines can be found here https://researcher-help.prolific.co/hc/en-gb/
articles/360009092394-Approvals-rejections-and-returns- (last accessed 2022/11/12).
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filter stdev vote f1 p r alpha

clean_contradictions_batch 0.5 majority 0.88 0.92 0.86 0.20
clean_contradictions_batch 0.5 uas0.65 0.87 0.87 0.87 0.20
clean_contradictions_pair 0.5 uas0.65 0.87 0.87 0.87 0.22
clean_contradictions_total 0.5 majority 0.86 0.88 0.85 0.25
- - uas0.7 0.84 0.84 0.85 0.19
clean_time-below_batch 1 top 0.84 0.86 0.83 0.20
clean_contradictions_pair 0.5 majority 0.84 0.86 0.83 0.22
clean_time-below_batch 1 majority 0.84 0.90 0.82 0.20
clean_contradictions_total 0.5 top 0.84 0.85 0.83 0.25
clean_contradictions_batch 2 top 0.83 0.85 0.82 0.20
clean_contradictions_batch 1.5 top 0.83 0.85 0.82 0.21
clean_contradictions_pair 0.5 top 0.83 0.84 0.82 0.22
clean_ct_wqs_batch 1 top 0.82 0.83 0.82 0.19
clean_ct_wqs_batch 1.5 top 0.82 0.83 0.82 0.19
clean_ct_wqs_batch 2 top 0.82 0.83 0.82 0.19
clean_ct_wqs_batch 0.5 top 0.82 0.83 0.82 0.19
- - top 0.82 0.83 0.82 0.19
exclude_contradictory_annotations - majority 0.82 0.84 0.81 0.24
exclude_contradictory_annotations - top 0.81 0.82 0.80 0.24
- - majority 0.81 0.86 0.79 0.19
clean_ct_wqs_batch 2 majority 0.81 0.86 0.79 0.19
clean_ct_wqs_batch 1.5 majority 0.81 0.86 0.79 0.19
clean_ct_wqs_batch 1 majority 0.81 0.86 0.79 0.19
clean_ct_wqs_batch 0.5 majority 0.81 0.86 0.79 0.19

Table 6.4: Evaluation total gold standard.

exp. aggregation filtering f.
unit

n_stdv f1 p r alpha

agree majority_vote contradictions pair 0.5 0.91 0.94 0.90 0.28
agree uas-0.65 - - - 0.91 0.92 0.90 0.23
agree uas-0.7 - - - 0.90 0.91 0.90 0.23
agree majority_vote contradictions total 1 0.89 0.94 0.88 0.28
disagree majority_vote contradictions batch 0.5 0.89 0.91 0.88 0.16
agree majority_vote contradictions batch 0.5 0.86 0.93 0.84 0.28
agree majority_vote no_contradictions - - 0.86 0.93 0.84 0.32
disagree majority_vote contradictions batch 1 0.85 0.89 0.84 0.15
disagree majority_vote contradictions batch 1.5 0.84 0.88 0.83 0.16
disagree majority_vote contradictions total 1 0.84 0.86 0.83 0.17
disagree majority_vote no_contradictions - - 0.83 0.84 0.83 0.31
agree majority_vote - - - 0.83 0.92 0.80 0.23
disagree majority_vote - - - 0.81 0.83 0.79 0.16
disagree uas-0.65 - - - 0.79 0.79 0.80 0.16

Table 6.5: Evaluation of aggregated labels against expert annotations for expected agreement
and disagreement in terms of precision, recall and a weighted f1-score. IAA is indicated by
Krippendorff’s alpha.

.
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about 183 units, which is more than two batches (of 70 questions each). The total inter-
annotator agreement (measured by Krippendorff’s alpha) is 0.31. If relations are merged
into most-all, some and few-none, inter-annotator agreement rises to 0.37. If just the
relations in the category few-none are merged, the alpha score is 0.33. We improved the
formulation based on the outcome of our first runs. The first two intermediate versions have
lower agreement scores than the third version as a result. The number of contradictions also
declines (partly due our allow-list approach).

Label Accuracy

In this section, we present the results of the evaluation with respect to the correctness of
extracted and aggregated crowd annotations compared to expert annotations. We experiment
with different filtering and aggregation methods using the metrics described in Section 6.2.5.

Filtering. We filter based on worker-quality metrics (wqs, contradiction rate, and time).
All scores require thresholds. We experiment with different thresholds calculated in terms
of n standard deviations +/- mean calculated over the entire dataset, a batch or a single
property-concept pair. For time, we only considered scores below the mean. Annotations
made by workers with scores outside of the threshold are removed. We vary n between 0.5
and 2 (in steps of 0.5).

Aggregation methods. We use three different strategies for aggregation: Majority vote (a
relation applies if >50% of workers select ‘agree’), top vote (only the relation or, in case of a
tie, the relations with the most ‘agree’ votes per pair) and varying unit-annotation score (uas)
thresholds (between 0.5 and 1 in steps of 0.05). The top vote has the limitation that it usually
only selects a single relation per pair as true, which disregards the nature of the task.

Results. Table 6.4 shows the weighted f1-scores for the full set of gold annotations.
In total, the set includes 131 units with a gold label (21 positive and 110 negative). The
combination of filtering and aggregation methods and their thresholds results in a high number
of configurations. We only report the best result for each filtering-aggregation combination.8

All filtering methods result in full coverage for the entire gold standard set. The results
show that a majority vote on labels filtered by contradiction rate on batch level yields the
highest performance. The combination of the crowd truth uas metric and filtering based on
contradictions performs almost equally highly. In contrast, simple majority or top vote achieve
an f1-scores of 0.82 and 0.81, respectively. The best CrowdTruth method (unit-annotation-
score) achieves an f1-score of 0.84, which is equally high as removing all annotations by
annotators who spent less time than one standard deviation below the mean of all annotators
who worked on a batch. Using the worker-quality-score to exclude annotations in combination
with a top-vote only marginally improves results compared to a simple majority or top vote
on unfiltered data.

We can observe that filtering based on agreement-independent factors (time, contradic-
tions) leads to similar performances as the uas score arising from the crowd truth framework.
A possible explanation for this phenomenon is that filtering annotations based on these factors
fulfills a similar function as assigning lower weights to unreliable annotators. It seems that

8The full set of configurations and their results is included in the Github repository https://github.com/
cltl/SPT_crowd_data_analysis.
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annotators who tend to disagree with the majority (measured by crowd-truth) also spend less
time on the task and tend to provide contradictory responses.

When considering the f1-scores in comparison to the total inter-annotator agreement on
the evaluation set (indicated by alpha in Table 6.4), it can be seen that high performance does
not necessarily depend on high agreement.

Expected Crowd Behavior

We compare the performance and inter-annotator agreement against expected agreement and
disagreement. If the annotations reflect the data accurately, clear units should achieve a higher
agreement than unclear, potentially ambiguous or difficult cases. Similarly, accuracy for clear
cases should be high.

Table 6.5 lists the results for units in the gold set with expected agreement and the gold
set with expected disagreement. In total, there are 49 units with expected agreement and 82
with expected disagreement (we merged possible and certain disagreement). For reasons of
space, we only show the top three configurations, the top-configurations on the full set and
some baseline configurations (majority vote on full, unfiltered set and excluding contradictory
annotations). The inter-annotator agreement confirms the expected behavior (0.23 on the full
set with expected agreement and 0.16 on the full set with expected disagreement). The results
indicate that the contradiction-based filtering methods achieve high performance on both the
set with expected agreement and expected disagreement, with only a slight advantage on the
expected agreement set. The CrowdTruth unit-annotation-score (uas) methods perform highly
on the set with expected agreements and drop on the set with expected disagreements (0.91
vs 0.79). We thus conclude that the contradiction-based methods provide a robust outcome
and uas (CrowdTruth) can reflect differences in difficulty between sets.

A limitation of this comparison is that the two sets differ in size and balance of labels,
which should be improved in an ideal set-up. The difference in inter-annotator agreement
seems to be large enough to confirm that the workers behaved as expected. The results
also indicate that robust labels can be extracted from a difficult set relying on contradiction-
filtering.

metric n_sd +/-mean accuracy (disagreement) micro f1

uqs 0 0.68 0.50
prop 0 0.71 0.48
prop_filtered 0.5 0.68 0.59
contradictions 1 0.32 0.41
contradictions_filtered 1 0.32 0.41

Table 6.6: Accuracy of different metrics in identifying units with certain disagreement. Each
metric requires a threshold, which we calculate based on mean +/- n standard deviations.

.
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6.2.7 Identifying Units with Valid Disagreement

In this section, we investigate whether we can identify valid disagreement and distinguish
it from noise. We evaluate how well unit-based quality metrics can distinguish units with
expected disagreement from units with expected agreement. For this aspect of the evaluation,
we use a stricter standard for identifying expected disagreement in the expert annotations:
We only use units which each of the expert annotators indicated as triggering disagreement
and units with expected agreement. This leaves us with 49 units with expected agreement (as
above) and 41 units with expected (and legitimate) disagreement.

We experiment with the unit quality score (uqs), proportional agreement (prop) and the
contradiction rate. The latter two can be applied to the raw and filtered dataset (we use the
best performing filtering method). For each metric, we calculate a threshold by establishing
the mean over all units and test performance using mean +/- n * standard deviation. The
best scores for each metric are reported in Table 6.6. We report the accuracy for identifying
valid disagreement in comparison to the micro f1-score. The best result is achieved by using
simple, proportional agreement on the dataset where contradictory annotations were removed.
The contradiction rate on its own is not suitable for identifying difficult instances.

6.2.8 Discussion

In this chapter, we have attempted to fill the gap between a heavy emphasis of inter-annotator
agreement on the one hand and justified disagreement on the other hand. Semantic annotation
tasks have been acknowledged to contain ambiguous, difficult, vague and possibly confusing
examples which are likely to trigger disagreement. While some approaches may still see these
cases as marginal, we argue that they are a vital part of many linguistic phenomena and can
yield important insights. In this paper, we have illustrated an approach for a dataset used in
model analysis experiments. The tradition of model analysis methods places strong emphasis
on the quality and soundness of datasets and the phenomena indicated by disagreement are
particularly relevant for our task. However, we argue that datasets used in other experiments
should be held to similarly high standards. The explanatory power of evaluation datasets
for semantic tasks in general could be improved by explicitly containing information about
disagreement.

We have shown that, for our particular use-case, the agreement-based metrics should not
be used as the sole indicator of quality. Our results show that a task-inherent coherence check
can yield important insights and serve as a valuable basis for discarding noisy annotations.
While we have only shown this for our use-case, we believe that the principle can be applied
to other annotation tasks as well. For example, we could imagine that the principle of
logical coherence checks can be applied to a semantic role-labeling task. Predicates with
contradictory semantic roles (based on the idea of selectional preferences) can be used as
an indication of either noisy annotations or ambiguous annotation units. Even tasks that are
particularly drawn to high disagreement, such as tasks in the domain of sentiment annotation,
could benefit from such checks. In hate speech identification, it could be considered to check
if (1) the same annotator uses opposing labels for very similar instances and (2) annotators
completely contradict one another on the same instances (rather than just disagreeing about
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the boundaries of categories (such as ‘positive’ and ‘neutral’). We do not intend to disregard
the complex nature of such a task; other contextual factors, such as the background of the
annotators, can also trigger contradictions. Taking these factors into account can yield further
useful insights when interpreting (differences in) annotations. We believe that considering the
interaction between these factors and logical checks can provide a valuable tool for analyzing
and processing annotations.

While the approach presented here can be taken as a first step, there are still a number of
limitations and remaining challenges. Most importantly, it would be highly valuable if the
existing metrics could be combined in such a way that we could use them for the identification
of different types of disagreements. For instance, it is relevant whether workers disagree
because some have more specialized knowledge than others or because the annotation unit
under consideration is indeed ambiguous. It could be considered to combine different metrics
in such a way that they can distinguish between disagreement due to noise, disagreement
because of differences in knowledge and disagreement due to real ambiguity. A possible way
to achieve this could be to use the different metrics as features in a machine learning system.
This research direction would require a larger volume of expert annotated gold data.

6.2.9 Conclusion

Despite the limitations discussed above, we draw the following conclusions: (1) Absolute
thresholds for inter-annotator agreement and aggregated scores over all annotations disregard
the nature of a difficult semantic task with ambiguous and vague instances. Rather, evaluations
should focus on whether agreement can be found in cases where agreement can be expected.
Our evaluation against expected agreement and disagreement shows that worker-behavior is
in line with our expectations despite overall low inter-annotator agreement. (2) The results
indicate that a simple, coherence-based task-specific worker-quality check yields accurate
labels, even on datasets with low inter-annotator agreement. The advantage of this check
is that it does not require high volumes of data to be accurate, but can be used with only a
handful of annotated units. We expect that similar checks can also be established for other
tasks. Such checks can be a cheap but high-impact approach, as they can be designed in such
a way that they adhere to what is important in a particular task. In our case, good workers
should understand questions and not contradict themselves. This is more important than
that they agree with other workers. (3) High inter-annotator agreement is not necessarily a
requirement for obtaining high-quality labels. Our evaluation shows that the highest f1-score
on the expert-annotated gold standard was achieved by a filtering and aggregation method
which does not result in the highest alpha score on the remaining labels. (4) While our
approach to the identification of legitimate disagreements is preliminary, we observe that a
simple, proportional agreement metric on a dataset filtered for contradictory answers yields
the best results. This research provides the groundwork for establishing the exact status
of individual annotation units and thereby establish whether the information and quality is
sufficient for experiments with computational linguistic models.
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6.3 Evaluation 2: Accuracy of Property-Concept Relations

In this section, I9 analyze to what extent the crowd annotations reflect valid and informative
judgments on the level of individual property-concept relations. In particular, I focus on
whether the aggregated labels reflect the intention behind the relations (Section 6.3.1) and
to what extent crowd annotators could make fine-grained distinction between relations (e.g.
distinguish between two similar notions of typicality) (Section 6.3.2). The annotations
evaluated in this section are the result of the best-performing filtering and aggregation method
introduced in Section 6.2.

6.3.1 Relation Accuracy

To provide a more fine-grained picture of annotation quality on the level of individual
relations, I evaluated 30 randomly selected property-concept pairs for which more than 50%
of annotators indicated that the property-concept relation applies. I judged each pair in terms
of whether it fits the property-concept relation it is assigned to. For some instances, the
annotation units leave room for interpretation. Such cases were marked as questionable.

To illustrate the evaluation procedure, consider the relation implied_category. The
relation expresses the idea that a property is highly implied by a concept and shared across
other, similar concepts that are likely to belong to the same semantic category. For example,
having wheels is part of our highly implied knowledge about the concept coach and generally
applies to the category of wheeled vehicles. For crowd annotations, the relation is expressed
by the following statement:

(14) I know that (a/an) coach has (a/an) wheels as most or all other things similar to (a/an)
coach have wheels.

Table 6.7 shows the 30 randomly selected property-concept pairs labeled with the relation
implied_category by more than 50% of crowd annotators. The pairs in the table are
sorted based on the proportion of annotators who agreed with the statement expressing the
property-concept-relation combination (‘prop_true’). The table also shows the crowd-truth
score assigned to the label (‘uas_true’). The final column shows my judgement in terms of
correct (✓), incorrect (✗) or questionable (?). It can be observed that pairs with a high positive
response rate tend to be correct, while most incorrect pairs have a low positive response
rate. The highest positive response rate for an incorrectly labeled pair (hot: cookware) is
0.63. Overall, 25 out of the 30 concepts received a correct label, while 3 received a clearly
incorrect label. The incorrectly labeled examples pairs are examples in which concepts are
valid positive examples of the property (apples are often green, emeralds are green, cookware
can be hot), but do not fulfil the requirements posed by the relation implied_category.

A summary of the outcome of this evaluation for all relations is shown in Table 6.8. The
individual pairs and judgements per pair can be found in Appendix . The table shows the
number of correct, incorrect, and questionable pairs (out of 30) per relation. To provide

9This component of the evaluation was carried out by me as a complementary analysis to the results presented
in Section 6.2.
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prop concept prop_true uas_true acc.

swim cobia 1.00 1.00 ✓

wheels locomotive 1.00 1.00 ✓

used_in_cooking taco 1.00 1.00 ✓

made_of_wood joist 1.00 1.00 ✓

wings pintail 1.00 1.00 ✓

lay_eggs tanager 1.00 1.00 ✓

fly jet 1.00 1.00 ✓

wings archaeopteryx 1.00 1.00 ✓

swim grindle 1.00 1.00 ✓

swim duckling 0.90 0.90 ✓

swim cichlid 0.88 0.89 ✓

juicy melon 0.88 0.89 ✓

made_of_wood plank 0.88 0.87 ✓

wheels snowplow 0.88 0.87 ✓

round pancake 0.86 0.91 ?
dangerous warhead 0.86 0.87 ✓

lay_eggs pickerel 0.83 0.83 ✓

roll hubcap 0.75 0.72 ✓

round beet 0.71 0.79 ✓

wings drone 0.71 0.72 ✓

made_of_wood deck 0.67 0.67 ✓

juicy aubergine 0.67 0.66 ?
dangerous pentobarbital 0.67 0.67 ✓

swim wolf 0.62 0.64 ✓

red heart 0.62 0.62 ✓

hot cookware 0.62 0.63 ✗

green emerald 0.56 0.55 ✗

square newspaper 0.56 0.55 ✓

lay_eggs crane 0.56 0.56 ✓

green apple 0.55 0.54 ✗

Table 6.7: 30 examples of the relation implied_category.

insights into the degree to which the positive response rate can reflect certainty, the table
also shows the highest positive response rate of an incorrectly labeled pair. In addition, the
number of correct pairs out of all pairs that received a perfect positive response rate of 1 (i.e.
all annotators agreed).

The results show that the relations differ with respect to accuracy; while typical_-
of_concept yielded 30 correctly labeled pairs, typical_of_property only yielded
13 and afforded_unusual only 18. For all other relations, at least 22 pairs could be
identified as clearly labeled correctly. When considering the role of the response rate, it can
be observed that overall, incorrectly labeled pairs tend to have a comparatively low positive
response rate (e.g. 0.63 for implied_category). For the two relations that score lowest in terms
of accuracy, however, the highest positive response rates of an incorrectly labeled pair are
comparatively high (0.85 and 0.86). The pairs with perfect response rates are almost always
clearly correct.

The manual evaluation of randomly selected pairs thus indicates that relations differ with
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respect to how well they were judged by the crowd. Complex semantic phenomena expressed
by the relations typical_of_property and afforded_unusual were judged least
reliably. Overall, the evaluation per relation indicates that most incorrectly judged pairs are
still correct in terms of the binary class they will be assigned to (i.e. concepts in pairs assigned
to positive relations are indeed positive examples of the property, concepts in pairs assigned
to negative relations are indeed negative examples of the property). Exceptions exist (e.g.
blue-flame is assigned to the relation unusual).

relation ✓ ? ✗ pos response
rate of highest
incorrect pair

n pos response
of 1.00 (clearly

correct)

typical_of_concept 30 0 0 - 12 (12)
typical_of_property 13 5 12 0.85 8 (8)
implied_category 25 2 3 0.63 9 (9)
affording_activity 22 5 3 0.66 9 (9)
afforded_usual 30 0 0 - 17 (17)
afforded_unusual 18 1 11 0.86 2 (2)
variability_limited 25 4 1 0.62 4 (4)
variability_open 24 6 0 - 6 (5)
rare 25 5 0 - 2 (2)
unusual 26 3 1 0.63 2 (1)
impossible 22 8 0 - 4 (4)
creative 24 6 0 - 2 (2)

Table 6.8: Overview of evaluation of random samples per relation.

6.3.2 Relation Distinctiveness

In addition to accuracy, I explore how well the crowd annotations can distinguish between
different property-concept relations. Certain combinations of relations are unlikely (and
should thus not occur frequently) while others are expected. For instance, implied_category
is likely to occur in combination with typical_of_concept, as both relations describe
close associations between a property and concept. In contrast, the relation afforded_-
usual should not occur at the same time as afforded_unusual, as the relations express
radically different relationships between properties and concepts.

To analyze whether the crowd behaved as expected, I test whether property-concept pairs
have been labeled with specific pairs of relations. When considering the example of the
two typicality relations typical_of_concept and typical_of_property, I expect
that almost all pairs annotated with typical_of_property have also been annotated
with typical_of_concept. For example, blood is a typical example of things which are
red (typical_of_concept), but red is also one of the first properties that come to mind
when thinking of blood. However, only a small subset of pairs labeled with typical_-
of_concept should also be annotated with typical_of_property; green is a typical
color of broccoli, but broccoli is most likely not the first thing that comes to mind when
thinking of the color green. To test such assumptions, I calculate the proportion of pairs
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annotated with relation (a) (e.g. typical_of_concept that are also annotated with
relations (b) (e.g. typical_of_property).

Table 6.9 shows the results of this analysis for a number of selected pairs (the full
results are included in Appendix ). Only pairs for which both relations appeared in the the
crowd annotation task are included. As expected, several relations that express a strong
association between a property and all instances of a concept show high overlap. For instance,
83% of pairs annotated with afforded_usual are also annotated with typical_of_-
concept and 99% of pairs annotated with typical_of_concept are also annotated
with afforded_usual. The fact that there is no complete overlap between any of the
relations indicates that they still express distinguishable notions.

For some relations expressing strong, positive associations, it is expected that they should
not have a high degree of overlap. While pairs annotated with typical_of_property
should also be annotated with typical_of_concept, only a small subset of pairs an-
notated with typical_of_property should also be annotated with typical_of_-
property. Almost 60% of pairs annotated with typical_of_concept have also been
annotated with typical_of_property. This intersection is relatively large and most
likely indicates that many crowd workers most likely indicated that typical_of_prop-
erty applied when they encountered a strong association between property and concept. For
the other positive relations with expected distinctions, the intersections are much smaller. For
typical_of_concept and variability_limited, a proportion of pairs assigned
to both relations is expected; a typical property can still be variable (e.g. red-apple).

A third group of relations encompasses relations expressing positive associations and
relations expressing negative relations that should be distinguished, but could possibly be
confused by the crowd. Candidates for possible confusion are shown in the table. When
considering afforded_unusual and negative relations, it can be observed that a relatively
high proportion of pairs annotated with afforded_unusual were also annotated with
unusual (37%) or rare (28%). This is not intended, but can be plausible as their relations
can lead to similar interpretations by untrained annotators:

(15) a. All or most puppy(s) can swim/be used for swimming. This is not what they
normally do or are used for. (afforded_unusual)

b. Usually, (a/an) puppy cannot swim/be used for swimming, but there could be a
highly unusual situation in which (a/an) puppy can swim. (unusual)

The relations expressing variability also overlap with the negative relation rare for some
pairs. This is to be expected, as people may have varying degrees of knowledge or different
thresholds for viewing a variable property as a rare occurrence (e.g. yellow-tomato).

For negative relations, a relatively high degree of overlap is expected, as the relations
mainly serve to facility the annotation process and already anticipate disagreement. As
expected, the negative relations rare and unusual share a high degree of overlap. In
contrast, the relations rare and unusual can clearly be distinguished from the relation
impossible.

Overall, the analysis of overlap between properties indicates that the crowd can indeed
make some fine-grained distinctions, but difficult semantic phenomena might not be reflected
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accurately. The natural language statements translation expressing abstract semantic relations
is not always easy to understand for untrained annotators. Furthermore, the statements might
not be precise enough and leave room for interpretation.

exp. rel1 rel1
with
rel2

rel1 and
rel2

rel2
with
rel1

rel2

overlap pos.

afforded_usual 0.83 0.82 0.99 typical_of_concept
afforded_usual 0.97 0.81 0.83 implied_category
affording_activity 0.90 0.74 0.81 implied_category
implied_category 0.85 0.74 0.85 typical_of_concept
affording_activity 0.91 0.71 0.76 typical_of_concept

distinctions pos

typical_of_concept 0.59 0.58 0.98 typical_of_property
typical_of_concept 0.47 0.32 0.51 variability_limited
afforded_unusual 0.14 0.05 0.07 afforded_usual
variability_limited 0.21 0.14 0.28 variability_open

distinctions pos-neg

afforded_unusual 0.37 0.26 0.46 unusual
afforded_unusual 0.28 0.24 0.62 rare
afforded_unusual 0.11 0.04 0.05 impossible
rare 0.30 0.15 0.22 variability_open
rare 0.34 0.14 0.20 variability_limited

overlap neg.
rare 0.88 0.61 0.66 unusual
impossible 0.21 0.10 0.15 unusual
impossible 0.05 0.03 0.05 rare

Table 6.9: Analysis of intersections between property-concept pairs annotated with relations.
The table shows the proportion of pairs annotated with rel1 that have also been annotated
with rel2 and vice-versa. The table also shows the proportion of pairs annotated with rel1 and
rel1 out of all pairs annotated with either rel1 or rel2.

6.3.3 Discussion and conclusion

This section presented an evaluation of the crowd task on the level of specific property-concept
relations. The analysis was based on 30 randomly selected property-concept pairs labeled
with a relation based on the best performing filtering-and aggregation method introduced in
Section 6.2.

The results of relation-accuracy indicate that overall, the crowd annotations can offer a
relatively accurate reflection of different property-concept relations. However, it should be
pointed out that the untrained annotators were not able to apply complex ideas correctly;
the relations typical_of_property and afforded_unusual showed the highest
numbers of incorrectly labeled pairs. On a more coarse-grained level, it could be observed
that the pairs labeled with clearly positive relations contain positive example concepts of the
property and pairs labeled with negative relations usually contain negative examples. This
evaluation of relation accuracy has the limitation that only pairs labeled with a relation were
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considered; it did not provide indications about false negatives (i.e. pairs that should have
been labeled with a relation but were not).

In addition to relation accuracy, I considered the degree to which the crowd annotations
reflect expected distinctions and expected overlap between property-concept relations. While
the observed patterns mostly reflect that the crowd could, at least to some extend, make
certain distinctions, the results also indicate that the relations typical_of_property
and afforded_unusual may not always have been interpreted correctly.

The reason for the difficulty of the crowd to apply the two relations accurately may lie
in the task setup or sentence formulation. It could be the case that the binary judgment of
relatively complex sentences is not suitable for eliciting fine-grained distinctions from the
crowd. In an alternative setup, annotators could see all possible relations at once and thus
might be more likely to compare relations against each other. In addition, the formulation
of the statements expressing the two relations could have been improved. Ultimately, it
could be the case that the two relations in question are too abstract and complex for a crowd
annotation task. In future research, it could be tested whether the two typicality relations
could be distinguished in a psychologically-informed annotation setup.

6.4 Summary

In this chapter, I presented two strategies for evaluating crowd annotations collected in a
complex semantic task: Section 6.2 presented an evaluation with respect to expected crowd
behavior. It showed that crowd annotations largely follow expected patterns; disagreement
occurs in instances that exhibit linguistic phenomena such as vagueness or ambiguity or
instances which require specific knowledge. Disagreement can thus be seen as a valuable
signal that has the potential to highlight specific phenomena in the data. Furthermore, the
evaluation showed that a task-inherent coherence-check offered the best method of detecting
unreliable annotations and filtering judgments.

The second evaluation strategy (Section 6.3) focused on label accuracy of specific, fine-
grained property-concept relations. The results indicate that accuracy differs between relations.
While many relations revealed a high proportion of accurate judgments, two showed less
reliable results. In particular, annotators seem to have problems with abstract and complex
semantic relations that require fine-grained distinctions. On a more coarse-grained level, the
judgments reflect an accurate classification of concepts as positive or negative examples of a
property.

Based on both evaluations, it can be concluded that the crowd annotation task was partially
successful; it resulted in a set of relatively reliable positive and negative examples of semantic
properties. In addition, a number of semantic relations have been annotated reliably. Two
relations, however, have triggered confusions between fine-grained semantic notions. This
should not be seen as a reason not to use the dataset; rather, the limitations should be
considered in further analysis.
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7. A Corpus of Properties, Concepts, and
Relations

7.1 Introduction

This chapter presents an analysis of the diagnostic dataset of properties, concepts, and relations
between properties and concepts. The main purpose of the dataset is to study the semantic
properties captured by context-free embedding models. For example, the dataset should reveal
whether embedding representations carry semantic information about the fact that lemons
and sunflowers are usually yellow, but limes and violets are not or that seagulls and airplanes
can fly, but penguins and cars cannot. Beyond this, the dataset should have the potential to
give insights into potential mechanisms that determine whether specific semantic information
is reflected by distributional co-occurrence patterns extracted from corpora and underlying
the embedding models. In this chapter, I investigate to what extent the dataset constitutes a
suitable diagnostic resource and thus address step 2c:1

Step 2-c Assess the resulting diagnostic dataset in terms of its ability to yield insights about
specific hypotheses and its adherence to methodological requirements.

To fulfil its diagnostic purpose, the dataset has to adhere to the following criteria: Firstly,
the dataset has to contain challenging and informative examples for diagnostic experiments
(see Chapter 4). Diagnostic experiments require positive and negative examples of a particular
piece of information. In the case of semantic properties, the target information is a particular
property, while the positive and negative examples are the embedding representations of
example concepts. A diagnostic classifier should provide insights into whether the embedding
representations capture the target property; if the classifier can learn to distinguish positive
from negative examples, it indicates that the property is indeed captured. The outcome of a
diagnostic classification experiment can only be valid if the property information is the only
information by which positive examples can be distinguished from negative examples. One
focus of the analysis in this chapter is to establish to what degree this is indeed the case for
the diagnostic dataset.

Secondly, the dataset should be able to provide insights that go beyond establishing
whether a certain property is captured by embeddings or not and provide insights into potential
underlying mechanisms that govern whether information tends to be captured by distributional
data or not (see Chapter 3). To investigate such mechanisms, properties and concepts are
linked with relations that should allow for testing specific hypotheses grounded in theoretical
and empirical research. For instance, it could be expected that embedding representations are

1The full dataset and code used for analysis can be downloaded from this repository: https://github.
com/PiaSommerauer/PropertyConceptRelations.
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good at capturing semantic information about afforded and usually performed activities (e.g.
used_in_cooking: pasta), but lack information about afforded, but usually not performed
activities (roll: candle). The second goal of this chapter is to establish to what extent the
dataset is indeed suitable for testing these hypotheses.

The results of the analysis provides a fine-grained overview of potential risks when
drawing conclusions from diagnostic experiments. The 21 property datasets that make up the
diagnostic dataset each have different profiles; while twelve out of the 21 property datasets
can be considered low risk, nine property datasets run risk of yielding misleading conclusions.
They can still be used in diagnostic experiments, but their results should be considered in the
light of their potential limitations.

The analysis of property-concept relations indicates different patterns for different property
types. When considering their explanatory power with respect to the hypotheses outlined
in Chapter 3, however, the analysis reveals complex interactions between different property
concept relations. Isolating individual relations to test their effect is hardly possible.

Despite its limitations, the dataset goes beyond existing diagnostic resources by making
the following contributions:

• Each property dataset contains verified positive and negative examples.

• The dataset has enough examples to allow for training and testing on a held-out test set.

• The dataset comes with a fine-grained analysis of potential limitations on the level of
individual properties.

Beyond these contributions for diagnostic experiments, the dataset constitutes a rich
resource of fine-grained aspects of common sense knowledge. Even though the property-
concept relations are not yet suitable for testing specific hypotheses, they offer a detailed
characterization of how properties can relate to concepts.

The remainder of this chapter is structured as follows: After an outline of the post-
processing steps used to curate the dataset (Section 7.2), Section 7.3 provides an overview of
central components of the dataset. Section 7.4 presents an analysis of the property datasets
with respect to their suitability for diagnostic experiments and explainable power. Section 7.5
presents ‘property-profiles’ that summarize the suitability of property datasets for diagnostic
experiments.

7.2 Post-Processing

This section presents the post-processing steps undertaken to remove noisy annotations and
assign property-concept pairs to fine-grained and coarse-grained property-concept relations,
as well as binary classes for diagnostic experiments.

Annotation task The post-processing steps are closely tied to the annotation task set-up and
procedure (described in detail in Chapter 5): The goal of the task was to annotate concepts
(e.g. lemon, chocolate) in terms of whether they are examples of a semantic property (e.g.
yellow). Specifically, property-concept pairs should be labeled with fine-grained relations
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that connect them. To accomplish this, property-concept-relation triples were translated into
natural language statements, such as the following example:

(16) “Blood” is one of the first things which come to mind when I hear “red’ because (a/an)
blood is a typical example of things which are red’. (triple: red-blood-typical_-
of_property)

Crowd annotators had to indicate whether they agreed or disagreed with the statement. In a
single annotation batch (which should take around seven minutes), crowd annotators saw all
possible relations for a given property-concept pair. A single batch always contained multiple
property-concept pairs to ensure diversity.

Filtering Before assigning labels or relations, all annotations were filtered following the
method outlined in the previous chapter (Chapter 6). The core principle of the filtering method
is the removal of annotations by annotators whose answers contain logical contradictions
within an annotation batch. Contradictions are defined as property-concept pairs that have
been annotated with mutually exclusive property-concept relations. In particular, relations that
connect a property to all or most instances of a concept (MOST-ALL category) and relations
that connect properties to few or no instances of a concept (FEW-NONE category) cannot apply
to the same property-concept pair. Consider the following two annotation units expressing
property-concept-relation triples as statements:

(17) a. “Wine” is one of the first things which come to mind when I hear “blue’ because
(a/an) wine is a typical example of things which are blue’. (triple: blue-wine-
typical_of_property)

b. Usually, (a/an) wine is not blue, but there could be a highly unusual situation in
which (a/an) wine is blue. (triple: blue-wine-unusual)

Statement 17a implies that all instances of wine are blue, while statement 17b implies that
only very few instances of wine are blue. If a worker agreed with both statements in the same
annotation task, this was counted as a contradiction, as both statements cannot be true at the
same time. In principle, all annotations from annotators who gave contradictory answers were
removed from the annotation batch (i.e. statements annotated in a single annotation session).

Not all instances in the annotation task were as clear as Example 17a and Example 17b.
Several statements contained ambiguity and vagueness. In such cases, contradictions can be
justified. If many annotators submitted annotations that contained contradictions, it can be
assumed that the statements in the annotation batch contained difficult instances that justified
the contradictions. Therefore, not all submissions containing contradictions were removed.
Instead, the threshold for the ‘accepted’ number of contradictions was adjusted based on the
behavior of all annotators who worked on a batch.

Fine-grained relation-assignment The goal of the annotation task was to assign relations
to property-concept pairs. To decide whether a relation should be assigned to a property-
concept pair, I use a majority-vote of all annotations left after filtering: If more than 50% of
annotators agreed with a statement, the relation is assigned to the property-concept pair.
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Coarse-grained relation assignment The fine-grained relations fall into categories depend-
ing on the subset of instances of a concept they apply to: MOST-ALL, SOME, FEW-NONE. I
assign the coarse-grained relation based on the fine-grained relation with the highest positive
response rate (i.e. proportion of annotators who agreed with a statement). This strategy
can result in multiple coarse-grained relations per pair if multiple relations have the same
positive response rate. For instance, the pair yellow-marigold has a positive response rate
of 1.0 for the relations typical_of_concept, typical_of_property, and vari-
ability_limited. Therefore, it receives the coarse-grained relations MOST-ALL and
SOME. Pairs whose relations fall into mutually exclusive coarse-grained relations categories
(MOST-ALL and FEW-NONE) are not assigned to a coarse grained relation and not included in
further analysis.

Binary labels To make use of the data in diagnostic experiments, it is necessary to assign
binary labels to each concept in a property dataset. I draw the line between positive and
negative examples between the coarse-grained relations SOME and FEW-NONE. I also include
concepts which feature both the coarse-grained relation SOME and the coarse-grained relation
FEW-NONE in the positive class. Such examples may run risk of containing noise, but overall
seem to contain justified positive examples (e.g. red-melon, black-crocodile). The examples
listed here can reasonably be described as positive examples of their properties, but may
trigger slightly different interpretations among annotators. Consequently, the negative class
consists of concepts whose relations only fall into the FEW-NONE category.

7.3 Dataset Overview

In this section, I provide an overview of the diagnostic dataset. I provide general statistics
and consider the core components of the dataset: properties, concepts, and their relations.

General statistics Table 7.1 presents an overview of the entire dataset. In total, the di-
agnostic set encompasses 21 properties and 1756 different concepts. Each concept can be
part of one or more property sets. In total, this results in 3304 property-concept pairs. The
property concept pairs can be linked by 12 different fine-grained relations. A combination of
property, concept, and fine-grained relation makes up an annotation unit. In the annotation
task, annotators judged individual annotation units (expressed as natural language statements)
one by one. In total, the dataset encompasses 30650 annotation units. The fine-grained
relations can be categorized into 5 different coarse-grained relations (e.g. ALL, ALL-SOME).

The dataset has been filtered and post-processed as outlined in Section 7.2. Most im-
portantly, the post-processing steps removed low-quality annotations. The results of this
filtering step can be observed in Table 7.2: Overall, the mean number of annotations per
unit was reduced to 8 (compared to 10). The overall inter-annotator agreement (measured
by Krippendorff’s alpha) rose from 0.36 to 0.40. The mean time spent per annotation unit
and annotator was about 9 seconds. Post-processing resulted in a higher number of pairs that
could not be assigned to a label.

108



7.3. DATASET OVERVIEW

total n

units 30650
pairs 3304
concepts 1756
properties 21
fine-grained relations 12
coarse-grained relations 5

Table 7.1: Overview of the diagnostic dataset.

raw clean

mean annotations per unit 10.08 8.06
Krip. alpha 0.36 0.40
mean duration per unit 9.24 9.25
pairs no label 267 290

Table 7.2: Effect of post-processing.

properties

perceptual juicy black square blue cold yellow green round sweet red warm hot
activities fly roll swim lay_eggs
complex used_in_cooking dangerous
parts/material wings wheels made_of_wood

Table 7.3: Overview of properties and property types.

Properties The core of the diagnostic dataset consists of 21 semantic properties. The
properties can be divided into four rough categories, as shown in Table 7.3. One goal of the
dataset is to have a verified selection of positive and negative examples for each property.
Ideally, the positive and negative classes should be balanced. Table 7.4 shows the mean
number of positive and negative examples per property. Overall, properties tend to have more
positive than negative examples (86 positive compared to 57 negative examples). Around 14
examples per property could not be assigned to a class because they contained contradictory
annotations (see Section 7.2). The positive and negative classes are not completely balanced,
but contain a substantial number of examples. As shown in Chapter 8, the property-datasets
are large enough for diagnostic classification experiments which involve training a classifier
and testing on a held-out test set.

mean

examples pos 86.10
examples neg 57.43
examples no label 13.81

Table 7.4: Mean number of examples per semantic property.
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Concepts Each concept in the diagnostic dataset is part of one or more property datasets.
The distribution of concepts over property datasets and their positive and negative classes is
summarized in Table 7.5. On average, each concept is part of nearly two property datasets.

mean

properties 1.88
positive examples 1.03
negative examples 0.69
invalid examples 0.17

Table 7.5: Overview of distribution over property datasets and classes on the level of individual
concepts (mean).

coarse-grained relation alpha seconds pairs properties candidate pairs

most-all

implied_category 0.53 7.73 1060 21 3045
typical_of_concept 0.55 6.84 1056 21 3045
typical_of_property 0.42 7.23 633 21 3045
afforded_unusual 0.27 9.40 107 4 623
afforded_usual 0.63 7.81 214 4 623
affording_activity 0.51 7.22 732 17 2422

some
variability_limited 0.34 9.32 967 21 3045
variability_open 0.32 9.05 672 17 2422

few-none
rare 0.28 7.07 630 21 3095
unusual 0.30 8.11 839 21 3095
impossible 0.41 8.04 617 21 3095

creative 0.17 7.55 400 21 3095

Table 7.6: Overview of inter-annotator agreement (measured by Kippendorff’s alpha), dura-
tion, and distribution over pairs and properties on the level of fine-grained relations.

Relations The third central element of the dataset are fine-grained property-concept rela-
tions. The relations reflect hypotheses about underlying factors that impact whether property-
evidence is likely to be encoded in distributional data. For instance, highly implied information
that is likely to apply to a larger semantic category (e.g. round-lemon) is not expected to
be mentioned explicitly and systematically in corpus data. This is reflected by the relation
implied_category.

The property-concept relations fall into three coarse-grained categories. The coarse-
grained categories are based on the number of instances of a concept the property applies
to (MOST-ALL, SOME, or FEW-NONE). Table 7.6 provides an overview of all relations
sorted by coarse-grained category. The table provides information about annotator behavior
(inter-annotator agreement measured by Krippendorff’s alpha and annotation time), and the
distribution of property-concept pairs over relations.

Overall, agreement in the MOST-ALL category tends to be higher than in the SOME

category. The inter-annotator agreement for negative relations and for the relation that
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Relation combination pairs properties

impossible 313 19
rare unusual 242 19
affording_activity implied_category typical_of_concept typ-
ical_of_property variability_limited

179 12

variability_open 175 12
creative impossible 170 18
affording_activity implied_category typical_of_concept typ-
ical_of_property

155 13

variability_limited 114 15
affording_activity implied_category typical_of_concept vari-
ability_limited

100 11

rare unusual variability_limited 93 13
afforded_usual implied_category typical_of_concept typi-
cal_of_property

88 4

Table 7.7: Top 10 relation configurations.

expresses a creative link between property and concept is lowest. This is to be expected, as
people tend to have different thresholds for when they call a property-concept combination
rare, unusual, or impossible and for what combinations they could understand in a figurative
manner.

When considering the distribution of properties over relations, it should be kept in mind
that not all relations can apply to all properties; for instance, only activity-properties can
have the relations afforded_usual and afforded_unusual. When considering the
distribution of property-concept pairs over relations, it should be noted that each pair can be
assigned to multiple relations. For example, the property concept pair red-apple is likely to
be annotated with the relations variability_limited and typical_of_concept.
This results in a high number of pairs per relation and high overlap between pairs assigned to
different relations. To illustrate the effect of this distribution, the top ten relation configurations
are shown in Table 7.7. It can be observed that combinations of many different relations from
the MOST-ALL and SOME categories tend to be frequent. Such combinations of many positive
relations complicate the analysis of individual relations in diagnostic experiments, as it is
hardly possible to distinguish the effects of individual relations.

Coarse-grained relations, in contrast, are distributed in a more straight-forward manner;
each property-concept pair is assigned to a single coarse-grained relation. The distribution
of properties and pairs over coarse-grained relations as well as the annotation behavior on
the level of coarse-grained relations are shown in Table 7.8. The two extreme ends of the
spectrum (MOST-ALL and FEW-NONE) appear in all property datasets. The relations linking
properties to a subset of concept instances (e.g. SOME: red: apple) do not appear in all
property datasets. This is plausible, as some properties are unlikely to apply to only subsets
rather than all or no instances (e.g. wings). The inter-annotator agreement is highest for clear
positive relations (0.53 for ALL-SOME and lowest for relations that link properties to a subset
of concept instances (0.29 for SOME, SOME-FEW).
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relation alpha seconds pairs properties candidate pairs

all 0.53 7.87 3092 21 7996
all-some 0.49 8.28 827 19 1936
some 0.29 9.32 1475 20 6690
few-some 0.29 6.99 194 17 710
few 0.36 7.66 2289 21 10908

Table 7.8: Overview of inter-annotator agreement (Kippendorff’s alpha), duration, and
distribution over pairs and properties on the level of coarse-grained relations.

Summary This section has presented an overview of the diagnostic dataset in terms of its
three main components: properties, concepts, and relations. Overall, the statistics presented
in this first analysis indicate that the dataset is indeed suitable for diagnostic experiments, as
it provides decently sized property datsets containing verified positive and negative examples.

In addition to being used in diagnostic experiments, the dataset aims to provide a basis for
testing hypotheses about the underlying dynamics that govern whether property-information
tends to be expressed explicitly in distributional data. The hypotheses are tied to fine-grained
property-concept relations. The analysis of these relations provides first indications that the
interactions between the relations are complex. Multiple relations can apply to the same
property-concept pair. The relations form complex configurations that do not necessarily
allow for analyzing the effect of individual relations.

Despite the potentially limiting complexity of property-concept relations, the dataset can
still constitute a diagnostic tool for semantic properties. The subsequent section presents an
analysis of the 21 property datasets. In particular, focus is placed on the degree to which
individual property datasets can provide valid results in diagnostic experiments and to what
degree they can provide explanatory insights.

7.4 Analysis of Property Datasets

In this section, I provide a characterization of the property datasets with respect to factors that
may impact the suitability of the datasets for diagnostic experiments and their explanatory
power.

The main criteria for valid diagnostic classification experiments are the following: (1)
The property has to be learnable given the dataset. (2) The property should be the only factor
that allows to distinguish positive from negative examples. To establish whether the datasets
fulfil these criteria, I consider the dataset sizes and class distribution as well as inter-annotator
agreement on property level (Section 7.4.1). As a next step, I assess the degree to which
positive and negative examples can be separated without necessarily having information about
the target property (Section 7.4.2). This is followed by an analysis of different lexical features
(first and foremost frequency and ambiguity) in the datasets (Section 7.4.3). Both features can
impact embedding vectors and thus the classification task. Finally, I provide a characterization
of property datasets in terms of the fine-grained relations represented by them (Section 7.4.4).
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#concepts pos neg no-label total-valid prop-pos alpha seconds
prop

used_in_cooking 180 107 68 5 175 0.61 0.52 7.93
wings 180 81 82 17 163 0.50 0.52 7.17
fly 180 65 106 9 171 0.38 0.43 8.09
green 180 95 70 15 165 0.58 0.42 6.38
hot 153 104 46 3 150 0.69 0.41 7.31
cold 110 73 23 14 96 0.76 0.40 6.86
swim 180 105 44 31 149 0.70 0.40 7.97
lay_eggs 153 77 68 8 145 0.53 0.40 8.65
wheels 114 75 29 10 104 0.72 0.38 8.32
blue 180 60 110 10 170 0.35 0.36 6.94
sweet 173 101 61 11 162 0.62 0.36 8.01
juicy 180 92 62 26 154 0.60 0.34 6.95
dangerous 140 78 57 5 135 0.58 0.34 8.54
warm 180 133 38 9 171 0.78 0.34 6.93
made_of_wood 151 103 42 6 145 0.71 0.33 8.51
black 151 89 55 7 144 0.62 0.31 7.42
yellow 174 44 88 42 132 0.33 0.27 7.72
square 119 90 21 8 111 0.81 0.26 7.60
round 137 107 23 7 130 0.82 0.23 9.29
red 169 95 68 6 163 0.58 0.23 10.48
roll 120 62 40 18 102 0.61 0.15 9.14

Table 7.9: Overview of property sets in terms of total number of concepts per property
(#concepts), number of positive (pos) and negative (neg) examples, number concepts without
valid labels (no-label) and the total number of examples with a valid label (total-valid). In
addition, the proportion of positive examples (prop-pos), Kippendorff’s alpha (alpha), and the
mean duration per judgment (seconds) are shown.

7.4.1 Class Distribution and Agreement

Fundamental criteria for good diagnostic property sets are enough positive and negative
examples and a low chance of noise. As a first step in assessing the quality of the datasets, I
consider the distribution of positive and negative examples and the inter-annotator agreement
per property dataset.

Table 7.9 lists the sizes of the positive and negative class together with the inter-annotator
agreement after pre-processing (‘alpha’). The degree of class imbalance is measured by the
proportion of positive examples out of all valid examples (indicated by ‘prop-pos’). In a
balanced dataset, this proportion would be 0.5.

Class balance All datasets with a class that makes up more than 70% of the examples are
marked in bold. This high degree of imbalance applies to six out of 21 properties: cold,
wheels, warm, made_of_wood, square, and round. Overall, most property sets tend to be
skewed towards the positive class (with the exception of yellow and blue). For datasets with
high class imbalance, learning to identify the target property is more difficult than for datasets
with balanced distributions. A reason for this class imbalance is that the dataset extension
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wiki_corpus giga_corpus googlenews
f1 p r f1 p r f1 p r

wings 0.85 0.85 0.85 0.78 0.80 0.78 0.81 0.83 0.81
used_in_cooking 0.80 0.86 0.80 0.88 0.91 0.87 0.88 0.90 0.87
round 0.73 0.79 0.69 0.58 0.78 0.51 0.60 0.70 0.55
lay_eggs 0.67 0.81 0.70 0.69 0.74 0.72 0.74 0.74 0.74
square 0.62 0.83 0.58 0.72 0.84 0.69 0.67 0.84 0.63
red 0.62 0.63 0.62 0.58 0.59 0.58 0.54 0.57 0.55
fly 0.61 0.62 0.63 0.54 0.58 0.52 0.51 0.61 0.51
warm 0.59 0.68 0.55 0.56 0.64 0.51 0.65 0.69 0.62
made_of_wood 0.57 0.58 0.56 0.58 0.54 0.66 0.59 0.60 0.58
sweet 0.57 0.57 0.57 0.53 0.53 0.56 0.63 0.63 0.63
wheels 0.56 0.54 0.57 0.78 0.79 0.80 0.80 0.86 0.83
swim 0.55 0.75 0.56 0.54 0.75 0.55 0.51 0.82 0.53
blue 0.53 0.67 0.54 0.50 0.71 0.53 0.50 0.61 0.50
dangerous 0.53 0.60 0.59 0.52 0.55 0.57 0.53 0.58 0.59
juicy 0.53 0.54 0.52 0.54 0.55 0.54 0.64 0.64 0.65
yellow 0.52 0.55 0.50 0.51 0.55 0.50 0.52 0.55 0.51
hot 0.52 0.54 0.51 0.52 0.63 0.50 0.53 0.63 0.51
black 0.52 0.51 0.56 0.71 0.72 0.73 0.59 0.69 0.59
cold 0.51 0.53 0.50 0.53 0.55 0.52 0.58 0.73 0.56
green 0.49 0.55 0.50 0.54 0.57 0.54 0.62 0.63 0.62
roll 0.47 0.47 0.51 0.46 0.37 0.60 0.49 0.55 0.51

Table 7.10: Overview of k-means clustering analysis (k = 2): Performance is assessed in
terms of precision, recall, and f1-score (weighted). A high f1-score indicates that the positive
and negative class are easily separable.

strategy (see Chapter 4 for details) used to find challenging examples in an embedding model
favored positive examples. One goal of this strategy was to collect challenging negative
examples that have a high similarity to already collected positive examples (as well as positive
examples). It is likely that the strategy resulted in more positive than negative examples.

Inter-annotator agreement Properties with the top three lowest agreement values are
marked in bold. The three properties with the lowest agreement values are roll, red, and
round. A possible reason for this low agreement is that the three properties in question were
annotated at the beginning of the annotation process (for details, see Chapter 5). At this
stage, the crowd workers were still new to the task. At later stages in the annotation process,
participation in the task was only open to crowd workers who had delivered reliable work in
previous annotation batches.

7.4.2 Class separability

Another aspect that is crucial for the validity of diagnostic classification experiments is that
positive and negative examples of a property should only be distinguishable by the target
property. While it is impossible to ensure that this criterium holds for every single example
pair, the dataset was designed in such a way that positive and negative examples should have
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a challenging distribution. In practice, positive examples should be semantically diverse and
located in different areas of an embedding space model. Negative examples should be similar
to positive examples not easily separable from them in terms of general dissimilarity.

In this section, I assess the risk of easily separable classes based on general vector
similarity. To address this issue, I use two strategies to test how easily positive examples can
be separated from negative examples based on their location in the embedding space: (1) I
use k-means clustering to test to what degree examples ‘naturally’ fall into the positive and
negative class. For this purpose, I use two possible clusters (k = 2). (2) I use distance to the
centroid vector of the positive class to assess to what extent positive and negative examples can
be separated in terms of distance to the centroid of the positive class. This strategy assesses
to what degree negative examples are dissimilar to positive examples, regardless of whether
they form a cluster themselves. Both analyses are conducted for three Word2Vec skip-gram
embedding models: a model trained on the Wikipedia corpus (2017 dump), a model trained
on the Gigawords words corpus, and the Googlenews Word2vec model (henceforth wiki, giga,
and google). The wiki and giga models were trained following the settings recommended
by Levy and Goldberg (2014).2 I chose these models as they are used in the diagnostic
experiments presented in Chapter 8. The wiki and giga corpus are used for corpus analysis in
Chapter 9.

Clustering The results of the clustering analysis are shown in Table 7.10. The performance
of clustering is measured by means of comparing the clusters to the actual labels (measured
by precision, recall, and weighted f1-score). For most properties, unsupervised clustering of
vectors yields low performance (most properties yield f1 scores around 0.55). This indicates
that overall, the examples do follow a challenging distribution, as they do not seem to naturally
fall into the positive and negative class.

While no property yields a perfect score, it can be seen that the two property sets wings
and used_in_cooking are among the properties with the highest clustering performance sets
in all three models (marked in bold). It should be noted that high performance indicates a
high degree of separability, which means that the property datasets may not be challenging
in a diagnostic experiment. High clustering performance is not desirable. The property
wheels has a high degree of separability in the giga and google models, while round is highly
separable in the wiki model. For the two part-properties wings and wheels, this relatively high
degree of separability is to be expected: Both properties tend to apply to traditional, possibly
fine-grained, semantic categories (wings: BIRD, WINGED INSECT, FLYING VEHICLE; wheels:
WHEELED VEHICLES). Likewise, the function property used_in_cooking is likely to apply to
the relatively coherent categories of FOOD and KITCHEN APPLIANCES.

Centroid The results of the centroid analysis are shown in Table 7.11. The table shows the
correlation (measured by Spearman Rho) between distance from the centroid calculated over
the positive class and positive and negative labels. A high correlation indicates that all positive

2The wiki and giga model can be found in this repository: https://bitbucket.org/
PiaSommerauer/distributionalmodels. The google model can be downloaded from https:
//drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=
0-wjGZdNAUop6WykTtMip30g
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examples tend to be close to the centroid, while all negative examples tend to be further away.
In a scenario in which the positive examples are highly diverse and negative examples are
similar to positive examples, this would not necessarily be the case. Overall, the correlations
between labels and distance to centroid are indeed low: most properties score below 0.5.
While this indicates that for most properties, there is a positive correlation between class
distribution and distance to the centroid, the property sets still contain challenging examples.

In addition to the correlation, the table also shows the ranks of the negative example
with the smallest distance to the centroid and the positive example with the greatest distance
to the centroid. These ranks can be seen as an indication of whether the examples follow
a challenging distribution: A low rank for the closest negative example indicates that a
negative example is located close to positive examples. Vice-versa, a high rank for the furthest
positive example indicates that a positive example is located far away from other positive
examples. It can be observed that property datasets with low correlations also tend to follow
such a challenging distribution. For example, in the Googlenews model the property blue,
which has a correlation of 0.01, the closest negative example appears on rank 5, while the
furthest negative example appears on rank 177. Similar extremes can be observed for red
and black. In comparison, for properties with a high correlation (e.g. used_in_cooking), the
closest negative example does not appear until rank 86 in Googlenews. Overall, the furthest
positive examples tend to appear on a challenging (i.e. high) rank (e.g. 168 for the property
used_in_cooking in Googlenews).

Across all three models, the properties used_in_cooking and wings are among the
properties with the three highest correlations. In addition, the property set for lay_eggs
shows a high correlation in google and wiki. The property set for dangerous shows a high
correlation in the giga corpus. These high correlation scores indicate that the property datasets
contain a comparatively low number of challenging examples and run risk of allowing for
successful classification without identifying the target information.

Both analysis methods also yield property sets that are likely to be challenging: The
clustering analysis shows low performance for roll across all models. In google, green and
cold also show low performance. In wiki and giga, yellow and blue, swim and fly also
show low performance and are thus likely to follow a challenging distribution. The lowest
correlations and most challenging distributions are shown by the color properties blue, red,
and the shape property round.

7.4.3 Distribution of Lexical Features

A major risk of diagnostic classification is that embedding representations can be classified
correctly without identifying the target information. A high degree of class separability (e.g.
measured by unsupervised clustering performance) can provide a first indication of this risk. In
a second step, I consider obvious lexical features that may correlate with one of the classes and
cause the high separability. Beyond the risk of correlation, lexical features may also increase
the difficulty of detecting information in an embedding representation. Two factors that are
likely to impact the embedding representations of words are frequency (Dubossarsky et al.,
2017) and ambiguity (Del Tredici and Bel, 2015). In addition to frequency and ambiguity,
words can be characterized by a number of other features. An extensive collection of different
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psycholinguistic features (e.g. concreteness of a concept) is provided by the MRC database
(Brysbaert et al., 2018). I use the information recorded in the database to characterize each
property dataset.

Frequency Low frequency in corpus data means that an embedding model has seen few
examples of a word. As shown by Sahlgren and Lenci (2016) and discussed in Chapter 2 low
frequency is likely to yield embeddings of lower quality. Low frequency words thus run risk
of containing little information. If all words in a positive or negative class have a low corpus
frequency, this may introduce an unwanted correlation.

To test the frequency distributions, I consider the frequencies of concepts in the wiki and
giga corpus3 The frequency distributions over the positive and negative class in each property
dataset are shown in Figure 7.1 for the giga corpus and Figure 7.2 for the wiki corpus. The
box plots show the distribution of the frequencies on a logarithmic scale as follows: The
boxes and whiskers show four quartiles of the distribution. The bars in the boxes indicate the
median. Outliers are shown as dots.

In the Gigawords corpus (Figure 7.1), it can be observed that the property datasets for
lay_eggs and swim tend to have more low frequency words than the other datasets. The
datasets for square and used_in_cooking are characterized by a striking difference between
the positive and negative class, which could constitute an unwanted bias. In the Wikipedia
corpus (Figure 7.2), the following observations can be made: Overall, the datasets for lay_-
eggs, swim and used_in_cooking tend to have more low-frequency words than the other
datasets. In addition, lay_eggs, roll, and square are also characterized by a stark difference
between the positive and negative class, which may interfere with diagnostic experiments.

Ambiguity Ambiguity can also be reflected by embeddings and may lead to specific features
in embedding vectors. Words with multiple senses tend to be located between the lexical
fields reflecting the senses, depending on their distribution in the underlying corpus data
(Del Tredici and Bel, 2015). If most words from a property dataset are particularly ambiguous,
the property is likely to be more difficult to detect.

To approximate the degree of ambiguity of a word, I use the number of synsets it has in
the Princeton WordNet hierarchy (Fellbaum, 2010; Miller, 1995). In this resource, synsets
represent groups of words which can be used synonymously. Words with several senses
appear in multiple synsets. The number of synsets a word appears in can be used as a proxy
for its degree of ambiguity. It should, however, be noted that the synsets in Princeton WordNet
represent rather fine-grained distinctions. This is by no means an exhaustive characterization
of ambiguity, but it provides some indication of ambiguity in the property datasets. The
distribution of synsets in the property datasets is depicted in Figure 7.3. It can be seen that the
datasets are relatively comparable in terms of the number of synsets associated with a word.
Overall, the dataset for made_of_wood seems to show a high degree of ambiguity.

3The same corpora are used to train models for diagnostic experiments (Chapter 8) and for corpus analysis
(Chapter 9).
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Psycholinguistic Features In addition to frequency and ambiguity, it is possible to measure
the distribution of psycholinguistic features recorded in the MRC database in the property
datasets. The database contains ratings for various psycholinguistic features (such as concrete-
ness) on a lexical level. I consider features that may have an impact on annotation behavior
as well as the distribution of words in the semantic space: concreteness, familiarity, and
imageability. For all three features, it is possible that annotators find it easier to judge words
that have a high rating. The potential impact on an embedding model is less straight-forward.
One possibility is that words with high concreteness scores tend to be placed in a different
area of the space than words with more abstract meaning. Imageability is not the same as
concreteness, but is likely to be correlated with it to some degree. Another potential impact
may be a correlation with frequency: While familiarity cannot be translated to frequency, it is
likely to correlate with it. The ratings in the MRC database do not cover the full vocabulary
of the diagnostic dataset. Therefore, the analysis in terms of psycholinguistic features is not
exhaustive. The results are shown in Appendix .

In general, most concepts in the property datasets refer to concrete concepts and tend to
have high ratings for all three features. What can be observed across all ratings is that the
property datasets for fly, dangerous, and lay_eggs contain concepts that score low for all
three features compared to other property datasets. This is likely to be caused by polysemous
terms that can, for instance, be bird names, but also have other, more abstract senses (e.g.
swift, ruff ). A difference in classes can be observed for the property dataset cold for both
concreteness and imageability. Negative concepts tend to score lower for the two features
than positive concepts.

7.4.4 Relation Profiles

Finally, property datasets can be characterized in terms of the property-concept relations they
contain. Each property could have its own ‘relation profile’; for instance, it could be expected
that color properties tend to be much more variable than part properties. To get insights into
such tendencies, I calculate the proportion of positive examples annotated with a relation.

Table 7.12 shows an overview of relations over property datasets. For this analysis,
only positive examples were considered, as the purpose of the relations is to characterize
the relationship between properties and concepts they apply to. The top relations for each
property are shown in bold (top proportion per relation and proportions closest to it). The
analysis gives rise to several patterns:

Perceptual properties Overall, it can be observed that all perceptual properties tend to have
a high proportion of variability relations. For three out of five color properties (black, blue,
and red), it seems that the variability relations are, in fact, the only prominent relations. In
other words, these three color properties do not tend to have strong, positive associations with
concepts. Rather, they tend to apply to a subset of concept instances. For other perceptual
properties, this pattern is less extreme: taste, temperature, material, and shape properties
tend to be afford activities (affording_activities). For instance, 70% of positive
examples in the juicy dataset are labeled as affording_activity, compared to 7% in
the dataset for black.
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Part properties A different pattern can be observed for part properties: Both properties of
this property type show low proportions of variability relations. Rather, the properties seem to
apply to all instances of concepts. For some concepts, the property may even apply to a larger
semantic category they are part of, as can be observed by high proportions for the relation
implied_category (e.g. 95% for the property wings). Furthermore, part properties tend
to afford activities. This is highly plausible, as wings and wheels tend to fulfil functional
purposes.

Complex properties Complex properties are properties that arise from a combination of
factors and depend on interpretation (e.g. multiple factors in combination lead to the fact that
tigers are interpreted as dangerous animals.) Complex properties also show high proportions
of relations that apply to most or all instances of a concept and tend to be relevant for functions
or activities. In contrast to part properties, they show higher proportions of variability.

Activity properties The four activity properties all share a relatively high proportion of
the relation implied_category. This can be seen as an indication that our conceptual
systems are organized around actions, as argued by Borghi and Caramelli (2003). The two
relations fly and lay_eggs have high proportions of the relation afforded_usual and low
proportions of afforded_unusual. In contrast, roll is characterized by afforded_-
unusual. Swim follows a similar pattern as fly and lay_eggs. This is plausible, as the four
properties differ with respect to how strongly they are tied to specific taxonomic categories:
Laying eggs and being able to fly is limited to specific animals, whereas many things can
roll, even if this is not what they normally do or are used for. This is also reflected by a high
proportion of variability for the property roll. The ability to swim is also tied to taxonomic
categories, but less strongly than flying or laying eggs. Mammals tend to be able to swim, but
do not necessarily usually engage in this activity (e.g. cats).

examples

blue ring flame piano hose taxi frog wand currant glass night
pot iceberg scorpion recorder football moss feather sand-
paper

red vinegar ring ginger rooster currant mangifera couch clar-
inet wand hair jeep aubergine mango glass miner apricot
football melon onion chameleon nectarine fern oven
syrup lewisia squirrel

black pelican ring cherry leopard pea hornet owl sheep pipefish
lizard nightmare crocodile rhino potoroo glass football
eye opossum acaridae weasel coatis snake raccoon pari-
dae zebra pig

roll propeller footrest tub saw pipe tappet glass lathe washer
lever bottle car plastic bucket bearing nut dowel

Table 7.13: Positive examples with negative relations.
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Finally, the table indicates that for several properties, positive examples have been an-
notated with negative relations, in particular rare and unusual. The properties black,
red, blue, and roll show comparatively high proportions for these relations. In practice,
these relations can only apply to concept-property pairs that do not have relations in the
ALL-SOME category, as such examples are treated as unreliable and not classified as either
positive or negative examples. It is plausible that some concepts have been annotated with
one of the variability relations as well as one of the negative relations. This can be the case for
property-concept combinations that are not well known or allow for different interpretations.
Table 7.13 shows all positive examples for which negative relations have been annotated
for the four properties black, red, blue, and roll. Overall, the examples seem to confirm
the hypothesis; several examples are valid positive examples, but do require more specific
knowledge or at least familiarity (e.g. blue-flame, blue-frog, black-pelican). Other examples
illustrate instances in which the property is vague given the property-concept combination
and therefore difficult to interpret (red-squirrel, black-zebra, black-cherry). For the property
roll, this vagueness is particularly prominent.

7.5 Property Profiles

In this section, I provide an assessment of each property dataset based on the factors described
in the previous sections. In particular, I consider the effects of combinations of different
risk factors (Section 7.5.1) and the potential explanatory value of each property dataset
(Section 7.5.2).

7.5.1 Overview of Risks

Based on the factors considered above, it is possible to draw conclusions about the degree
to which different property-datasets can yield insights about property-representation by
distributional models. To summarize the risks for diagnostic experiments, I classify the
different factors observed above into the following four categories:

Difficulty Various factors are likely to pose a particular challenge to diagnostic classification.
Among them are a high number of low frequency words in the property dataset, a high degree
of ambiguity in the entire set or one of the classes, and a high class imbalance. Rather than
posing a risk for misleading positive results, difficulty may offer an explanation for negative
results.

Noise Noise in the dataset can be caused by low quality annotations (indicated by low
inter-annotator agreement) and the direct identification of vague or false-positive examples.

Separability A major risk of diagnostic classification experiments is that the positive class
can be distinguished from the negative class by relying on aspects other than the target
information. In the case of semantic properties and concepts, such a situation can occur if
all positive examples happen to form a coherent semantic category (e.g. RED FRUITS) from
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property total score difficult noise correlation separability

fly 0
green 0
sweet 0
juicy 0
yellow 0
hot 0

black 1 x
blue 1 x
warm 1 x
cold 1 x
made_of_wood 1 x
swim 1 x

wheels 2 x x
dangerous 2 x x
red 2 xx
square 2 x x
wings 2 xx

round 3 x x x
used_in_cooking 4 x x xx
roll 4 x xx x
lay_eggs 4 xx x x

Table 7.14: Overview of risk factors per property dataset: Individual risk factors within a risk
category are indicated by ‘x’. The total score is the sum of identified risk factors.

which all all negative examples can easily be distinguished. This risk was assessed by means
of a clustering analysis and by means of measuring cosine distances from the centroid vector
over the positive class.

Correlation Accidental correlations with a class can be caused by many linguistic and
distributional factors and are difficult to control. One factor that can be explored is frequency.
Stark differences in word frequencies between the positive and negative class are considered
a risk of accidental correlation.

Table 7.14 provides an overview of all four risk factors for each property dataset. The
number of factors that apply within a risk category are indicated by crosses (‘x’). For example,
if a property dataset has low inter-annotator agreement and potentially noisy or vague false
positives, this is indicated by two crosses in the column for ‘noise’ (as is the case for red).
The total score indicates how many risk factors apply to a property dataset. It can be observed
that for six properties, no risk factors have been identified. For another six properties, only
one risk factor applies (either noise or difficulty). For nine property datasets, 2 or more factors
apply.

It should be noted that not all risk factors carry the same weight. For instance, a high
degree of separability is not necessarily an indication of an accidental correlation; rather, it
may be caused by a particular strong encoding of the target property (wings, wheels). The
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combination of a potential correlation with frequency and a high degree of separability, does,
however, pose a considerable risk (lay_eggs, used_in_cooking). Class imbalance by itself
is not necessarily problematic either. In combination with other factors that make correct
classification difficult (low frequency and high ambiguity) or noise (round, roll), it may,
however, pose the risk that information cannot be identified by diagnostic classifiers even if it
is encoded in the embedding representations.

7.5.2 Explanatory Power

Based on the relation profile of each property and its risks in a diagnostic setup, it is possible
to assess the suitability of individual property datasets to provide insights in diagnostic
experiments. In an ideal scenario, individual property datasets would have a single, salient
relation that applies to most positive examples. To test for possible interactions, the results of
the property dataset could be compared to another property dataset that allows for controlling
possible interactions.

Consider the following example: Implied information is expected to be not made explicit
in corpus data and should therefore not be encoded in distributional representations. The ideal
scenario to test whether this is the case would be a dataset in which the majority of positive
examples is only annotated with the relation implied_category, which is not the case
for any of the property datasets. The dataset that comes closest to this ideal is the dataset
for the property swim (see Table 7.12): 76% of positive examples are annotated with the
relation implied_category. However, large proportions of these examples are likely to
be annotated with other relations that would interfere with the analysis. For example, high
proportions can also be found for the relations afforded_usual (64%), and typical_-
of_concept (58%). A single property-concept pair can be annotated with multiple relations
which causes overlap between pairs assigned to different relations. Unfortunately, no other
property dataset allows for a comparison to control for this; the dataset for fly comes close, but
has a higher proportion of examples for all three relations. Furthermore, drawing conclusions
from comparing two property datasets does not exclude the possibility that the reason for
the performance difference lies in the properties themselves. Ideally, properties of the same
property type with different relation profiles should be compared. Unfortunately, it is not
possible to find configurations in the dataset that allow for isolating the effect individual
semantic relations.

To illustrate the complexity of potential interactions between relations, the most frequent
relation configuration for each semantic property dataset is shown in Table 7.15. In addition
to the most common relation configuration, the table shows the proportion of positive ex-
amples that share the configuration. For most relations, the proportion of the most common
configuration is comparatively low (e.g. 9% for roll, below 50% for 18 out of 21 properties).
This indicates considerable diversity in the configurations of relations. Furthermore, for most
properties, many different relations are part of the configuration, making it almost impossible
to isolate the effect of individual relations. Thus, at this point, the dataset is not suitable to
give fine-grained insights into specific factors that may impact the representation of semantic
properties in embedding vectors based on diagnostic experiments.
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top-config proportion

roll afforded_usual implied_category typical_of_concept
typical_of_property

0.09

red variability_open 0.10
round variability_open 0.10
square variability_limited variability_open 0.12
made_of_wood affording_activity implied_category typical_of_concept

typical_of_property variability_limited
0.17

black variability_limited 0.18
yellow implied_category typical_of_concept typical_of_prop-

erty variability_limited
0.19

hot affording_activity implied_category typical_of_concept
typical_of_property variability_open

0.24

green affording_activity implied_category typical_of_concept
typical_of_property variability_limited

0.24

sweet affording_activity implied_category typical_of_concept
typical_of_property variability_limited

0.25

warm variability_open 0.31
dangerous affording_activity implied_category typical_of_concept

typical_of_property
0.31

blue variability_open 0.32
swim afforded_usual implied_category typical_of_concept

typical_of_property
0.39

lay_eggs afforded_usual implied_category typical_of_concept 0.39
wheels affording_activity implied_category typical_of_concept

typical_of_property
0.41

juicy affording_activity implied_category typical_of_concept
typical_of_property variability_limited

0.41

fly afforded_usual implied_category typical_of_concept
typical_of_property

0.46

cold variability_open 0.53
used_in_cooking affording_activity implied_category typical_of_concept

typical_of_property variability_limited
0.57

wings affording_activity implied_category typical_of_concept
typical_of_property

0.63

Table 7.15: Most frequent relation-configuration for each property dataset and the proportion
of positive examples it is shared by.

7.6 Discussion and Conclusion

This chapter has provided a characterization of the diagnostic dataset. Particular focus has
been placed on assessing to what degree it is a suitable instrument for diagnostic classification
experiments and whether it can provide insights into underlying tendencies that govern
whether property information is encoded in distributional data.

The assessment of the suitability for diagnostic classification has focused on several
aspects: difficulty (balance between the classes, word frequency, degree of ambiguity), chance
of noise (agreement, vague or false-positive examples), potential accidental correlation with
frequency, and the distribution of positive and negative examples in the distributional space.
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Each of these factors can pose a potential risk for a misleading outcome. For six property
datasets, no risks could be identified. Six further property datasets show one risk factor either
relating to potential noise or difficulty. The remaining nine property datasets show several risk
factors involving the chance of accidental correlation and a high degree of class separability.
The combination of the two factors applies to two datasets and warrants particular caution
when interpreting the results of diagnostic experiments.

Despite these limitations for some of the property datasets, the diagnostic dataset can
still be considered an improvement over approaches that purely rely on extracting examples
from feature norm datasets (e.g. Fagarasan et al., 2015), as it contains verified negative
examples. The dataset can be seen as a complementary resource to the Quantified McRae
norms (Herbelot and Vecchi, 2016); it also presents information about subsets of concept
instances a property applies to. The current dataset contains fewer properties than other
feature-norm datasets. Instead, it contains more substantial sets of positive and negative
examples per property. Furthermore, to the best of my knowledge, the analysis of suitability
and risks for diagnostic classification is unique to the diagnostic dataset presented in this
thesis.

The analysis of fine-grained property-concept relations in the datasets indicates complex
interactions between relations that do not allow for controlled analyses. The relations do,
however, provide rich information into property-concept combinations and can be considered
a resource of fine-grained aspects of common sense knowledge. In future research, it could
be considered to extend the dataset in such a way that individual hypotheses can be tested in
diagnostic experiments.

7.7 Summary

The main purpose of this chapter was to present a characterization of the diagnostic dataset
and analyze it with respect to its suitability and explanatory power in diagnostic experiments.
The chapter presented a global analysis of the core aspects of the dataset (properties, concepts,
and their relations), as well as a detailed analysis of the 21 property datasets. The different
property-datasets constitute suitable diagnostic tools to varying degrees. In contrast to other
resources, the dataset presented in this thesis contains substantial sets of verified positive
and negative examples as well as fine-grained information about its particular risks and
shortcomings on the level of individual properties.

The analysis also indicated that at this stage, the property-concept relations are not yet
able to indicate information about the potential underlying factors that determine whether
property-information is encoded in distributional data. Nevertheless, the relations provide
rich information about specific property-concept pairs and thus constitute a resource of
fine-grained common sense knowledge.

129





Part IV

Experiments
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Part V of this thesis presents experimental work based on the diagnostic dataset. First and
foremost, the dataset was designed for diagnostic experiments on context-free embedding
representations. Chapter 8 presents two experimental setups specifically designed to tackle
the problems of diagnostic classification by means of exploiting the strengths of the diagnostic
dataset using context-free word vectors. The results indicate that context free embedding
models are unlikely to capture property-specific information.

To complement these experimental results, I conduct a corpus analysis (presented in
Chapter 9) of two corpora underlying the context free models to explore what type of
linguistic property-evidence they contain and whether this evidence is likely to be represented
by the embedding vectors and identified by diagnostic classifiers. The insights obtained in
this analysis confirm that property-specific evidence does not provide a strong signal that is
likely to end up in embedding representations. In contrast, fine-grained semantic category
information seems to be more salient. I also explore to what degree the linguistic evidence
found in the corpora is in line with the hypotheses presented in Chapter 3.

The final chapter (Chapter 10) of this part presents initial steps towards analyzing semantic
property knowledge captured by contextualized language models. I use the diagnostic dataset
to design two tasks that require semantic property knowledge. Rather than using diagnostic
classification, I chose to rely on model behavior, namely masked token prediction for pre-
trained language models and a common-sense reasoning task based on Winograd sentences
for fine-tuned language models. While the pre-trained language models do seem to capture
at least some semantic properties, this knowledge is not reflected by the fine-tuned models.
Rather, they seem to be relying on different types of discourse structures when making
decisions.





8. Diagnostic Classification of Context-free
Models

8.1 Introduction

This chapter presents two probing studies that aim to detect to what degree semantic properties
are encoded in context-free embedding representations. The core idea behind both probing
experiments is the following: If information about a semantic property is encoded in the
embedding representations, it should be learnable by a simple, binary classifier trained on
positive and negative examples of the property. For instance, if the property fly is encoded
in the embedding representations, a binary classifier trained on positive examples of the
property (e.g. pigeon, eagle, bee, wasp, airplane) and negative examples of the property (e.g.
ostrich, table, car, spider, boat) should be able to distinguish held out positive examples
(e.g. seagull,butterfly, helicopter) from held out negative examples (e.g. penguin, caterpillar,
boat).

Probing has a major methodological challenge: Probing results by themselves cannot
necessarily provide conclusive results about whether a piece of information is encoded as it is
difficult to verify that the distinguishing features identified by the classifier are indeed linked to
the target information. At the core of the problem lies the possibility of accidental correlations
in the data. This possibility complicates the interpretation of probing performance:

Correlation In many cases, semantic properties correlate with semantic categories. If the
majority of positive examples of a property (e.g. fly) is taken from the same category (e.g.
BIRD) and the majority of negative examples is taken from radically different categories
(e.g. FURNITURE, CLOTHING), it is impossible to determine whether the classifier learned
to identify information about the property or whether it learned to recognize the semantic
category represented in the positive class.

Interpretation It can be expected that probing classifiers will hardly ever reach perfect
performance, as information is unlikely to be encoded sufficiently for every single instance in
the training and test data. However, imperfect performance might also be caused by other
factors: The classifier may have learned to identify other aspects of semantic information that
happen to correlate with the positive and negative class, such as semantic categories or other,
accidental correlating aspects. High, but not perfect performance by itself can thus not be a
guarantee that the classifier could, indeed, identify the target property.

The problem can be addressed from two perspectives: It is possible to control the
distribution of positive and negative examples to avoid obvious correlations. At the same
time, it is possible that accidental correlations remain present. Therefore, a complementary ap-
proach is to compare classifier performance to baselines that do not require the identification
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of the target property to yield reasonable performance. If a probing classifier can outperform
such a baseline, this is a good indication that it could go beyond general semantic simi-
larity (e.g. between the members of a category) and managed to identify property-specific
information in the embeddings.

In this chapter, I present two studies that aim to address these challenges in their method-
ological setup. The first study (Section 8.2) uses a pilot version of the dataset and compares
probing classifiers to a classification approach based on similarity to an approximated property
embedding. This comparison allows to gain insights into whether a classifier could access
individual vector dimensions and thus go beyond general similarity. The results provide initial
indications that visual-perceptual properties are most likely not encoded in embeddings, while
properties relevant for how entities interact with the world (functions, actions) may well be
encoded.

The second study (Section 8.3) uses the full version of the diagnostic dataset and can thus
exploit the controlled distribution of positive and negative examples: The positive examples
are taken from a variety of semantic categories and negative examples have high similarity to
positive examples. A classifier thus has to go beyond general similarity in order to perform
well. In addition, the study employs a control and ceiling task. The control task aims to
determine to what extent the probing classifiers could indeed learn to abstract over property
information (rather than classify examples based on general, not property-specific similarity
to training set examples). The ceiling task indicates to what extent information can be learned
given the size and class distribution of a property set. The results indicate that property
information is not encoded for color properties. Other properties yield better results on the
probing task when compared to the control task, but the error analysis indicates that the
classifiers learn fine-grained semantic categories, rather that property-specific information.

The first study (presented in Section 8.2) is based on the following publication:

Pia Sommerauer and Antske Fokkens. 2018. Firearms and tigers are dangerous, kitchen
knives and zebras are not: Testing whether word embeddings can tell. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 276–286

8.2 Study 1: Probing vs. Nearest Neighbors

The study presented in this section uses a pilot version of the diagnostic dataset and offers
a first methodological set-up to derive meaningful results from probing experiments on
embedding representations. The main focus lies on comparing probing classifiers to a
classification approach based on cosine similarity to an approximated property representation.
The probing classifiers should be able to access individual vector dimensions encoding
specific aspects of semantic information (i.e. subspaces of the embedding vectors). The
cosine-similarity approach cannot access subspaces and thus remains limited to comparing
embedding in terms of general similarity.

If property-specific information is encoded in the embedding representations, the probing
classifiers should be able to detect the relevant subspaces, even if the representations of the
example concepts come from radically different semantic categories and are spread over
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the entire semantic space (e.g lipstick, blood and strawberry should all carry information
of the property red). In contrast, the nearest neighbor approach will only perform well on
properties whose positive examples are taken from a relatively coherent semantic category
(e.g. examples that share a taxonomic category such as BIRD: pigeon, sparrow, eagle). It will
not perform well on properties that cut across a diverse set of semantic categories.

The comparison of the two approaches can be interpreted as follows: If both the nearest
neighbor approach and the probing classifiers yield low performance for a property, it can
be concluded that property information is not present in the embeddings. In contrast, if the
nearest neighbor approach is outperformed by the probing classifiers, it can be concluded that
it could detect information that goes beyond general semantic similarity. The third possibility
is that both approaches perform equally highly. This outcome cannot provide indications
about whether a property is encoded in the embeddings.

The focus of the study lies on exploring the representation of individual semantic proper-
ties. In addition, we1 also experiment with property-encoding for words involved in regular
polysemy. We test specific hypotheses about what type of property-information we expect to
be encoded in embeddings. While we find mixed evidence for several aspects, the results seem
to provide initial indications that visual-perceptual properties are most likely not encoded in
embeddings. Properties that relate to the way entities interact with the world (expressed as
actions or functions) do seem to be identified by the probing classifiers.

The subsequent sections are taken from the original publication. Minor adaptations have
been made to integrate the text in the larger framework of the thesis. The remainder of this
section is structured as follows: The details of the method are outlined in Section 8.2.1.
Section 8.2.2 presents our experiments and results. We finish with a critical discussion and
overview of future work in Section 8.2.3.

8.2.1 Method

The core of our evaluation consists of testing whether nearest neighbors and classifiers are
capable of identifying which embeddings encode a given semantic property. We first describe
the dataset and then present the procedure we apply. We complete this section with our
hypotheses about the outcome of our evaluation.

Extended CSLB Data

The dataset used for this study is based on the CSLB norms and constitutes a pilot version
of the diagnostic dataset presented in Part III. The pilot dataset consists of examples from
the CSLB set and has been extended via an embedding model. In a second set, we used
crowd-sourcing and manual verification to select appropriate negative examples. In this
section, we outline the steps taken to construct the dataset and highlight its most important
characteristics. The details of the dataset construction are described in Chapter 5. A record of
the decisions taken in the annotation and verification process can be found on Github.2

1The work presented in this Section has been conducted together with Antske Fokkens. The experimental set-up
was developed together and implemented by me. The publication was co-written by both authors.

2All annotations, guiding principles as well as notes about resolving discussions can be found at https:
//cltl.github.io/semantic_space_navigation.
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Classification approaches

We use the pretrained Word2vec model based on the Google News corpus.3 The underlying
architecture is a skip-gram with negative sampling model (Mikolov et al., 2013b), which
learns word vectors by predicting the context given a word.

The overall goal is to investigate whether word vectors capture specific semantic properties
or not. We start from the assumption that classifiers can learn properties that are represented in
the embedding in a binary classification task. We apply supervised classification to see whether
a logistic regression classifier or a neural network are capable of distinguishing embeddings
of words that have a specific semantic property from those which do not. Specifically, we
use embedding vectors corresponding to words associated or not associated with a semantic
target-property (i.e. positive and negative examples) as input for a binary classifier and test
whether the classifier can learn to distinguish embeddings of words that have the property
from those who do not. However, word embeddings also capture semantic similarity. If a
property is shared by similar entities (e.g. most animals with a beak are birds), the classifiers
may perform well because of this similarity rather than identifying the actual property. We
therefore compare the performance of classifiers to the performance of an approach based on
full vector similarity. If only the classifiers score well, this provides an indication that the
embedding captures the property. If both methods perform poorly this could mean that the
property is not captured.4

Supervised classification As the datasets are limited in size, we evaluate our classifiers by
applying a leave-one-out approach. We employ two different supervised classifiers, which
we expect to differ in performance. As a ‘vanilla’ approach, we use a logistic regression
classifier with default settings as implemented in SKlearn (Pedregosa et al., 2011). This type
of classifier is also used by Drozd et al. (2016) to detect words of similar categories in an
improved analogy model.

In addition, we use a basic neural network. Meaningful properties may not always be
encoded in individual patterns, but rather arise from a combination of activated dimensions.
This is not captured well by a logistic regression model, as it can only react to individual
dimensions. In contrast, the neural network can learn from patterns of dimensions. We
use a simple multi-layer perceptron (as implemented in SKlearn5) with a single hidden
layer. We calculate the number of nodes in the hidden layer as follows: (number of input
dimensions + number of output dimensions) * 1/3. The pretrained Google News vectors have
300 dimensions, resulting in a hidden layer of 100 nodes. We use the recommended settings
for small datasets. No parameter tuning was conducted so far due to the limited size of the
datasets and the use of a leave-one-out evaluation strategy. We present the runs of several
models, as the neural network can react to the order in which the examples are presented
as well as the randomly assigned vectors for initialization. While the performance of the

3https://code.google.com/archive/p/word2vec/
4Given the size and balance of our dataset as well as the lack of fine-tuning, we remain careful not to draw firm

conclusions at this point.
5http://scikit-learn.org/stable/index.html
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model could be optimized further by experimenting with the settings, we find that the setup
presented here already outperforms the logistic regression classifier in many cases.

Full vector similarity To show that supervised classification can go beyond full vector
comparison in terms of cosine similarity, we compare the performance of the classifiers to an
n-nearest neighbors approach. We calculate the centroid vector of all positive examples in the
training set. The training set consists of all positive examples in the leave-one-out split except
for the one we are testing on. We then consider its n-nearest neighbors measured by their
cosine distance to the centroid as positive examples. We vary n between 100 and 1,000 in
steps of 100. We report the performance of the optimal number of neighbors for each property
(which varies per property).

Variety approximation The performance of the approaches outlined above depends on to
the variety of words associated with a property. We approximate this variety by calculating
the average cosine similarity of words associated with a property to one-another. This is
done by averaging over the cosine similarities between all possible pairs of words. A high
average cosine similarity means that the words associated with a concepts tend to be close
to each other in the space, which should mostly apply to words associated with taxonomic
categories. In contrast, a low average cosine means a high diversity, which should largely
apply to general descriptions.

Specific hypotheses

We select a number of properties for closer investigation based on the clean and extended
dataset described in Section 8.2.1. We first formulated the hypotheses independently, before
discussing and specifying them.6 Table 8.1 summarizes the agreed upon expectations. The
hypotheses can be categorized in the following way:

Sparse Textual Evidence We select properties of which we expect that textual evidence
is too sparse to be represented by distributional vectors. The properties is_black, is_yellow,
is_red and made_of_wood have little impact on the way most entities belonging to that
class interact with the world. We expect that the only textual evidence indicating them are
individual words denoting the properties themselves (e.g. red, black, wooden)7 and it is
unclear how often they are mentioned explicitly. It may, however, be the case that certain
subcategories in the datasets are learned regardless of this sparsity, because they happen to
coincide with more relevant taxonomic categories such as red fruits.

Fine-grained Distinctions in Larger Categories We expect that a supervised classifier
may be able to make more fine-grained distinctions between examples of the same category
when these differences are relevant for the way they interact with the world. We select

6Details can be found on the Github repository.
7In the case of made_of_wood, the evidence may be a bit broader, as it might be indicated by different types of

wood occurring in the context of furniture.
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Property learnable property

is_an_animal yes
is_food yes
is_dangerous yes
does_kill yes
is_used_in_cooking yes
has_wheels possibly
is_found_in_seas possibly
is_black no
is_red no
is_yellow no
made_of_wood no

Table 8.1: Hypotheses about whether selected semantic properties can be learned by a
supervised classifier.

two properties that introduce crucial distinctions in larger categories: has_wheels and is_-
found_in_seas. The former applies to a sub-group of vehicles and may be apparent in certain
behaviors and contexts only applying to these vehicles (rolling, street, etc). The latter applies
to animals, plants and other entities found in water, but it is unclear whether textual evidence
is enough to distinguish between seawater and fresh water.

Mixed Groups We expect that a supervised machine learning approach can find positive
examples of a property that are not part of the most common class in the training set. For
instance, the majority of positive examples for is_dangerous and does_kill refer to weapons
or dangerous animals. We expect the classifier to (1) find positive examples from less well
represented groups and (2) be able to distinguish between positive and negative examples of a
well-represented category (e.g. rhino v.s. hippo for killing). For the property is_used_in_-
cooking, the example words refer to food items as well as utensils. We expect that classifiers
can distinguish between cooking-related utensils and other tools.

Polysemy We expect that machine learning can recognize vector dimensions indicating
properties applying to different senses of a word, whereas the nearest-neighbors approach
simply assigns the word to its dominant class. We used the systematic sense shift between
animal and food senses (a case of metonymy) to test this hypothesis. For instance, we
expect that word vectors that can be used to describe animals as well as food (e.g. chicken,
rabbit or turkey) record evidence of both contexts, but end up closer to one of the categories.
A supervised machine learning approach should be able to find the relevant dimensions
regardless of the cosine similarity to one of the groups and classify the word correctly. We
test this by training on a set of monosemous words (animals and food items) and test on a set
of polysemous and monosemous examples.
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8.2.2 Experimental Setup and Results

Concept Diversity vs. Performance

We first investigate the relation between performance and diversity of concepts associated
with a property on the full, noisy dataset using a leave-one-out approach. Table 8.2 shows
a selection of the f1-scores achieved on properties in the CSLB dataset in relation to the
average cosine similarity of the associated words. A high average cosine similarity means
that the concepts overall have similar vector representations and can thus be seen as having
a low diversity. The results of the Spearman Rank correlation clearly indicate that scores
achieved by nearest neighbors correlate more strongly with the average cosine than the
two supervised classification approaches. In addition, this the mean cosine similarity of
positive examples to the centroid representations (‘cos’) indicates the diversity of examples
associated with a property. For instance, the perceptual properties is_heavy and is_thin and
the encyclopedic property is_strong have low mean cosine similarities (0.15, 0.16, 0.15),
indicating that positive examples of these properties are scatter over the embedding space.
This is plausible, as these properties can apply to a wide variety of concepts from many
different semantic categories. In contrast, the property does_make_music has a high mean
cosine similarity (0.55), indicating that its positive examples are all located close to one
another in the embedding space. This is also plausible, as the property mainly applies to
musical instruments, which form a coherent semantic category.

feature cos f1-neigh f1-lr f1-net type

is_heavy 0.15 0.15 0.17 0.21 op
is_strong 0.15 0.13 0.13 0.34 e
is_thin 0.16 0 0.05 0.1 vp
is_hard 0.16 0.15 0.08 0.26 op
is_expensive 0.16 0 0.28 0.37 e
made_of_wood 0.17 0.14 0.62 0.62 vp
... ... ... ... ...
is_black 0.2 0.29 0.23 0.24 vp
is_electric 0.21 0.48 0.5 0.69 vp
is_dangerous 0.21 0.53 0.57 0.59 e
is_colourful 0.21 0.14 0.25 0.32 vp
is_brown 0.21 0.13 0.22 0.33 vp
has_a_handle _handles 0.22 0.44 0.57 0.58 p
has_a_seat _seats 0.22 0.43 0.3 0.48 p
does_smell _is_smelly 0.22 0.08 0.15 0.37 op
made_of_glass 0.22 0.29 0 0.28 vp
has_a_point 0.23 0.38 0.23 0.47 p
does_protect 0.24 0.38 0.26 0.37 f
is_yellow 0.24 0.22 0 0.23 vp
is_soft 0.24 0.12 0 0.16 op
is_red 0.25 0.34 0.13 0.27 vp
is_fast 0.25 0.3 0.31 0.48 vp
is_tall 0.25 0.43 0.57 0.65 vp
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is_a_tool 0.26 0.5 0.51 0.47 t
does_kill 0.28 0.64 0.48 0.62 f
... ... ... ... ...
is_a_weapon 0.3 0.74 0.56 0.63 t
is_green 0.31 0.45 0.45 0.45 vp
has_a_ blade_blades 0.32 0.68 0.65 0.74 p
is_worn 0.32 0.47 0.86 0.9 f
has_wheels 0.32 0.82 0.83 0.87 p
is_found _in_kitchens 0.33 0.56 0.73 0.76 e
does_fly 0.33 0.57 0.76 0.76 f
has_a_tail 0.33 0.53 0.68 0.69 p
is_an_animal 0.33 0.64 0.76 0.78 t
is_eaten_edible 0.33 0.37 0.88 0.85 f
has_four_legs 0.34 0.67 0.66 0.66 p
is_a_vehicle 0.34 0.76 0.69 0.79 t
does_eat 0.34 0.68 0.71 0.68 f
... ... ... ... ...
has_a_beak 0.37 0.63 0.83 0.87 p
made_of_cotton 0.37 0.68 0.56 0.64 vp
has_roots 0.37 0.3 0.65 0.72 p
is_a_mammal 0.37 0.69 0.85 0.86 t
does_grow 0.37 0.52 0.81 0.81 e
is_a_plant 0.37 0.43 0.63 0.64 t
has_leaves 0.37 0.41 0.71 0.78 p
... ... ... ... ...
has_pips_seeds 0.47 0.5 0.08 0.46 p
is_juicy 0.5 0.71 0.48 0.56 op
is_a_vegetable 0.52 0.78 0.75 0.81 t
is_played _does_play 0.53 0.9 0.98 0.98 f
does_make_music 0.55 0.89 0.95 0.92 f

spearman-r 0.72 0.52 0.59

Table 8.2: Performance of different approaches in relation to the average cosine similarity of
words associated with a property (cos). The last row shows the Spearman Rank correlation
between f1-scores and average cosine similarity. Property types are listed under type (p =
part, vp = visual-perceptual, op = other-perceptual, e = encyclopaedic, f = functional, t =
taxonomic).

Outcome of Specific Hypotheses

We carry out further experiments on a small extended and clean subset, consisting of carefully
selected negative examples from the CSLB dataset and crowd annotations validated by the
authors. The distribution of positive and negative examples per property is shown in Table 8.3.
For some properties, the sets derived from the CSLB norms alone have an imbalanced
distribution of negative examples over semantic categories, as they were selected by means
of logical exclusion (e.g. concepts listed under has_wheels have been selected as negative
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Property pos neg

full_does_kill 101 69
crowd_does_kill 67 49
full_has_wheels 79 349
full_is_black 42 89
full_is_dangerous 177 104
crowd_is_dangerous 131 84
full_is_found_in_seas 83 72
crowd_is_found_in_seas 47 28
full_is_red 29 80
full_is_used_in_cooking 142 61
full_is_yellow 24 68
full_made_of_wood 87 282
full_is_an_animal_test 37 20
full_is_an_animal_train 166 77
full_is_food_test 37 20
full_is_food_train 97 146

Table 8.3: Class distribution in dataset consisting of the clean datasets derived from the CSLB
set and the additional crowd judgments (marked full_). For some properties, we included the
dataset consisting of crowd-judgments only, as it is more balanced across semantic categories
than the full set (marked crowd_). For all properties, a leave-one-out approach was applied to
evaluation except for is_animal and is_food.

examples of is_food). Therefore, we add the more balanced but smaller datasets created by
crowd-judgments only where enough judgments have been collected. We created additional
sets for words part of the food-animal polysemy to test whether supervised classifiers can
successfully predict semantic properties of various senses of polysemous words. In the
following sections, we will outline the most striking results. Most results confirm, but some
contradict our initial hypotheses.

Table 8.4 shows the f1-scores on the full clean datasets. As hypothesized, the color
properties is_yellow and is_red perform low in all approaches, with slightly better results
yielded by supervised learning.

The properties involved in functions and activities or with high impact on the interaction
of entities with the world all perform highly in the classification approaches. For does_-
kill, is_dangerous and is_used_in_cooking, there is a large difference between the best
nearest neighbors approach and the best classification approach (between 60 and 19 points),
indicating that the classification approaches are able to infer more information from individual
dimensions than is provided by full vector similarity. The property is_dangerous has, as
can be expected, a particularly high diversity of associated words (comparable to the colors).
Has_wheels and is_found_in_seas can be expected to have high correlations with other
taxonomic categories (fish and water animals, vehicles), which is reflected in the lower
diversity and comparatively high nearest neighbor performance.

Cases contradicting our expectations are the visual properties is_black and made_of_-
wood. Both have comparatively high classification performance with a big difference to the
nearest neighbor results. Most likely, this is due to a category bias in the negative examples.
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For instance, a large proportion of the negative examples for is_made_of_wood consist of
animals and food. In the dataset for is_black, a large proportion of the positive examples
consists of animals.8 A classifier can perform highly by simply learning to distinguish these
two categories from the rest.

The biases in semantic classes mentioned above partially result from the way we generated
the negative examples from the original CSLB dataset. This means that a classifier may
learn to distinguish two semantic categories rather than being able to find vector dimensions
indicative of the target property. We therefore also present selected results on crowd-only
datasets shown in Table 8.4, which do not have this bias. It can be observed that for all three
properties,9 the performance of the classification approaches drops marginally, whereas it
rises for nearest neighbors.

We investigate the outcome on a number of individual examples to gain more insights into
whether the subtle differences hypothesized in Section 8.2.1 hold. Since we only formulate a
general hypothesis for Sparse Textual Evidence, we do not dive deeper into the results for
that category here.

Fine-Grained Category Distinctions The full clean has_wheels dataset includes a number
of instances for which the classifiers can make more fine-grained distinctions than nearest
neighbors. As hypothesized, classifiers, in contrast to nearest-neighbors, can recognize that
neither sled nor a skidoo have wheels, but a unicycle a limousine, a train, carriage, an
ambulance, a porsche do. Another fine-grained distinction can be identified in the is_found_-
in_seas crowd-only set: Sculpin is correctly identified as a seawater fish by all classifiers but
not by nearest-neighbors.

Mixed Groups Whereas nearest neighbors predominantly identify weapons as is_dan-
gerous in the crowd-only set, the classifiers go beyond this category. The neural network
approach correctly identifies that imitation pistol, imitation handgun, and screwdriver are
negative examples of is_dangerous. Furthermore, no animals are labeled as dangerous based
on proximity to the centroid, but the classifiers are able to distinguish between some danger-
ous and non-dangerous animals (e.g. rhinoceros is labeled positive, while giraffe and zebra
are labeled as negative). All three classifiers recognize that meth, cocaine and oxycodone are
considered dangerous substances, despite the fact that they are far away from the centroid of
dangerous things. Of the only two disease-like concepts, Hepatitis C and allergy, the former is
recognized by all classifiers and the latter only by logistic regression. The performance on the
smaller, but also weapon-dominated does_kill crowd-only set is comparable, but the variety
of atypical cases is lower. Among the only two disease-related items, dengue is identified by
all classifiers and dengue virus only by the neural network.

In the crowd-only is_found_in_seas set, seabird and gannet are correctly labeled as
positive, even though positive examples almost exclusively consist of fish or underwater-

8The property has a comparatively low mean cosine similarity between the centroid and the positive examples
(0.19, as shown in Table 8.4), indicating high diversity of positive examples. In this particular case, it is possible that
the low mean is caused by outliers rather than a generally diverse distribution of examples.

9We only included properties for which we had enough positive and negative examples in our set
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property av-cos neigh lr net1 net2

full_is_yellow 0.23 0.19 0.47 0.64 0.64
full_is_used_in _cooking 0.37 0.29 0.98 0.98 0.98
full_is_black 0.19 0.35 0.75 0.77 0.77
full_is_red 0.23 0.36 0.51 0.54 0.52
full_is_dangerous 0.24 0.58 0.88 0.88 0.87
crowd_is_dangerous 0.26 0.61 0.86 0.86 0.86
full_has_wheels 0.38 0.90 0.96 0.96 0.95
full_is_found_in_seas 0.44 0.87 0.97 0.98 0.98
crowd_is_found _in_seas 0.50 0.87 0.94 0.96 0.96
full_does_kill 0.27 0.67 0.83 0.86 0.82
crowd_does_kill 0.30 0.70 0.82 0.84 0.80
full_made_of_wood 0.17 0.14 0.84 0.85 0.85
full_is_food_test 0.37 0.00 0.36 0.36 0.36
full_is_an _animal_test 0.37 0.52 0.88 0.88 0.88

Table 8.4: F1 scores achieved by logistic regression (lr) two runs of a neural net classifier (net1
and net2 and the n-best nearest neighbors evaluated with leave-one-out on the full datasets
(marked as full_ and the crow-only sets (marked as crowd_).

.

animals, whereas the negative examples encompass a vast variety of animals, including bird
and some freshwater fish.

Polysemy For systematic sense shifts between food and animal senses of words (metonymy)
(Table 8.4), we observe that when trained on pure animal and food words and tested on
polysemous animal and food words, the classifiers perform highly with a large difference to
nearest neighbors. For food versus pure animal words, the classifier performance is much
lower. We expect the extremely low nearest neighbor performance to be due to the fact that
the centroid is calculated over pure food items (without a single animal-related item, not
even culinary meat terms such as pork or beef ) which is far away from the animal-region
in the space. Despite the classifiers outperforming nearest neighbors, the outcome does not
confirm our original hypotheses. We expected that the classifiers could identify that edible
animals have both animal properties and food properties, but upon inspection of the results,
the classifiers only identified entities with a predominant animal sense correctly as animals
and those with a predominant food sense correctly as food.

8.2.3 Discussion and Conclusions

The experiments presented in this approach have several limitations. First, our semantic
datasets are still limited in size. Second, the implication method we applied to generate
negative examples led to biases for some properties where most negative examples belong
to a small set of (taxonomic) classes. Third, no parameter tuning has been carried out so far.
Careful parameter tuning would ensure that the best possible classification approaches are
chosen and that the obtained results truly exploit the informative power of the embeddings.
Due to the limited size of the dataset and the leave-one-out approach to evaluation, this has
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not been possible in this preliminary study. Fourth, the experiments presented here only
concern a small subsection of semantic properties too limited to draw general conclusions.
Despite these limitations, our results provide preliminary insights that lead us to conclude
that the overall idea behind our methods works.

The main contribution of this study is that it introduces a new method aimed at investigat-
ing the kind of semantic information captured by word embedding vectors. We have taken
the first steps towards constructing a dataset suitable for this investigation on the basis of an
existing dataset of human-elicited semantic properties. We introduced a set of hypotheses
concerning which semantic properties are captured by embeddings and presented exploratory
experiments verifying them.

We show that classifiers, in particular neural networks, can identify which entities have a
specific property in cases where this does not follow from general similarity or the overall
semantic class the entity belongs to. This can be seen as a first indication that (some) semantic
properties are encoded in individual (patterns of) vector dimensions, which can be identified.

The results on the extended datasets partly confirm that visual properties are not well
represented by embeddings, while properties relating to function (e.g. cooking, having wheels)
and interactions with other entities (e.g. being dangerous or killing) tend to be represented
well. Some of these indications could be the result of the bias in our current dataset, but others
have been confirmed on the smaller crowd-only sets for properties with enough available
data (is_dangerous and does_kill). Further evidence is provided by the full dataset for
has_wheels which encompasses a large group of vehicles to which the property does not
apply. In addition, we support these indications by qualitative insights through examples
of the kinds of distinctions made by the classifiers, but not the nearest neighbor approach.
Results achieved for polysemous words and two visual properties currently do not confirm
our hypotheses.

8.3 Study 2: Control and Ceiling Task

In this section, I present a study using the full diagnostic dataset. It addresses the methodolog-
ical challenges of probing by means of two strategies: Firstly, we10 introduce a control and
ceiling task as tools to interpret classifier performance. Secondly, we use the full diagnostic
dataset enables us to exploit the challenging example distribution in the property datasets.11

At its core, the study addresses the problem of how we can draw conclusions from a
semantic probing task given the problems and limitations of diagnostic classification. As an
illustration, consider the following scenario: To find out whether the property fly is encoded
in embedding representations, we train a classifier on the following examples:

positive airplane, rocket, eagle, pigeon

negative boat, emu, truck, penguin

10The experiments in this study were designed in collaboration with Antske Fokkens and Piek Vossen. The
experiments were implemented by me. The text in this section is partially based on an unpublished paper written in
collaboration with Antske Fokkens and Piek Vossen.

11The code for the experiments and the datasplits used can be accessed via this repository: https://github.
com/PiaSommerauer/ControlledPropertyDiagnostics
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We test whether the classifier has learned to identify the property fly using the following test
examples:

positive helicopter, albatross, sparrow

negative rover, crane, ostrich

The probing classifier provides the following output (wrong answers marked with an asterisk):

positive helicopter, rover*, sparrow

negative albatross*, crane, ostrich

The output allows for multiple interpretations: The first option is that the classifier learned
to identify the target property fly, but the representation of albatross did not carry enough
evidence of it. Likewise, the representation of rover happened to carry evidence of fly.

An alternative explanation of the outcome is that the classifier did not learn to identify
evidence of the property fly. Instead, it found other similarities between train and test
examples to arrive at its solution: The word rover is likely to appear in similar contexts as the
positive training example rocket, as both words are related to space travel. The word albatross
is likely to appear in similar contexts as the word penguin, as both birds are commonly found
in Antarctica. The correctly classified examples can be explained by similar associations that
do not necessarily require knowledge of the property fly: ostriches and emus share many
properties and so do helicopters and planes, and trucks and cranes (in the sense of the lifting
tool rather than the bird). In short, a classifier could have memorized examples in the training
set and classified test set examples based on similarity to the memorized examples.

To determine whether a semantic property has been learned successfully by a diagnostic
classifier, the second explanation for its output has to be ruled out. We employ two comple-
mentary strategies to distinguish between outcomes caused by memorization and outcomes
caused by successful identification of the target property.

Example distribution. Classifying examples based on memorization is difficult if the
examples in the positive and negative class are semantically diverse. Ideally, the positive
examples only share the target property. The negative examples should only be connected
by not having the target property. Given such a scenario, a classifier that only relies on
memorization cannot achieve high performance.

Control task. A second strategy is to compare classifier performance to a strong baseline.
A classifier that identifies the target property successfully should outperform a classifier that
can only rely on memorization. A control task should contain examples that are connected by
semantic similarity, but do not share the target property. For instance, a control dataset for the
property fly could consist of the following examples:

positive airplane, airport, albatross, penguin, seagull, ostrich

negative emu, crane, train, shuttle, satellite, orbit
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The classifier trained and tested on the dataset for fly should outperform the classifier trained
on the control train and test set for fly if it managed to identify the target information. Both
datasets should be equivalent with respect to size and class distribution.

The interpretation of low classifier performance also poses a problem: In practice, the
property datasets struggle with an additional limitation that complicates the interpretation
of the results: Various property datasets are limited in size and have an imbalanced class
distribution. Thus, low classifier performance may either indicate that property-information
is not learnable or that the target information is simply not learnable given the size and class
distribution. We introduce a ceiling task to test whether information is learnable given a
dataset with a particular size and example distribution.

Applying the control task and dataset analysis to the ceiling task shows that probing can
detect information given a clear signal even with small imbalanced data. For most semantic
properties, we only find weak or no evidence of information in the embeddings. Our analyses
provide no evidence of visual property information in embeddings. Furthermore, they indicate
that embeddings may represent taxonomic category information rather than property-specific
information. These results are inline with previous findings (e.g. Rubinstein et al., 2015).

This section is structured as follows: We present methodological considerations with
respect to the interpretation of results and the probing dataset for a semantic task in Sec-
tion 8.3.1. We describe our experimental setup in Section 8.3.3 and present the results of our
experiments in Section 8.3.4.

8.3.1 Methodological Considerations

In this section, we outline the methodological considerations underlying our experiments.
As introduced in the previous section, major problem of diagnostic classification is the
interpretation of classifier performance. If a classifier performs well (e.g. above a random
or majority-class baseline), but does not achieve perfect results, this is not necessarily an
indication that it identified the target information (Hewitt and Liang, 2019; Belinkov, 2021).
It is impossible to distinguish between the following two underlying reasons:

1. Imperfect representation: The classifier learned to identify the property, but it is not
represented in all instances. Errors are caused by instances in which the property is not
represented.

2. Memorization or Correlation: The classifier did not learn to identify the target property,
but performed above chance by classifying instances based on similarity to instances in the
training data. The similarity can be caused by other semantic aspects that correlate with a
class (e.g. a category). Hewitt and Liang (2019) emphasize that this risk of memorization
increases with the complexity of the classifier. In this case, neither correct classifications
nor errors indicate the presence or absence of the target information in the representation.

We test two complementary strategies to distinguish actual property learning from memoriza-
tion: (1) Classifier selectivity using a control task and (2) a controlled distribution of property
examples.

Classifier performance below baseline is not straight-forward to interpret either. It can
indicate that property information is not present or that the size and distribution of the
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diagnostic dataset are not sufficient for the classifier to learn it. We address this question by
means of a ceiling task.

Classifier Selectivity

Hewitt and Liang (2019) propose control tasks against which the performance on the diag-
nostic target task can be compared. The goal of a control task is to determine how highly a
classifier can perform if it can only rely on memorization of examples without having access
to the information of interest (in our case semantic property information). Such a control task
can be seen as baseline that can only be beaten by identifying the target information.

Hewitt and Liang create such a control task for probing part-of-speech (pos) information
in contextualized language models by using the following strategy: They assign a random pos
label to each word in the control set regardless of its context. The pos label is kept constant
across all occurrences of a word in the training and test set. Since the pos assignment is
random, the context in which tokens appear does not provide any indication of the correct pos
label (e.g. the word love will always have the same label, regardless of its context and thus
regardless of its actual pos label). Thus, the model representations used as input for the probe
should not contain indicative information. This results in a situation in which a classifier can
achieve reasonable performance by means of memorizing examples in the training set (i.e.
occurrences of the same word) but not achieve perfect performance (unless there is 100%
overlap between the training and test vocabularies).

If the classifier trained on the actual pos labels clearly outperforms the control classifier
relying on memorization, this is a strong signal that it learned to identify pos information in
the language model representations. This can be measured in terms of selectivity, which is
defined as the performance difference between the target probe and the control probe.

Semantic control task. The notion of selectivity defined by Hewitt and Liang (2019)
cannot be translated to our lexical semantic task directly. In our task, train and test splits
never contain the same tokens. Memorization can still occur, but here it means that a classifier
bases its predictions on general vector similarity to training examples instead of identifying
the semantic target information.

A good control task for semantic property probing has to fulfill the following criteria: (1)
Randomness: It should contain a set of randomly chosen examples assigned to the positive
class of a property. Some of the examples will be positive instances of the property, but
others will not. This means that a probe cannot rely on the target information anymore.
(2) Similarity: The random positive examples should be connected by overall high vector
similarity. This enables a probing classifier to exploit memorization while not having access
to the target information. It can thus indicate what performance a classifier can achieve by
means of classification purely based on similarity to memorized examples. This type of
distribution constitutes a strong baseline. If the probe clearly performs higher on the real task
than on the control task, we can interpret this as a strong indication that it could go beyond
memorization.

We create control datasets by forming a chain of similar words by carrying out the
following steps: (1) We randomly pick a word from the original set, which can be a positive
or negative example. This word acts as our first seed of the positive control class. (2) We
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look for nearest neighbor of the seed in an embedding model.12 (3) We repeat this step using
the most recently added word until the size of the random control set matches the size of
the positive class of the original set. (4) We use the remaining words as negative control
examples. The resulting set is then divided randomly into a train and test split. We use this
process to create 10 control sets (each starting with a different random seed word). Results
are presented in terms of mean performance scores over the 10 control sets.

Diagnostic data

Beyond a control task, the architecture of the diagnostic dataset itself can help to distinguish
property learning from memorization or correlation. Ideally, examples can only be classified
correctly if the classifier could identify property-specific information. Such a scenario can be
approximated by a distribution which has a high diversity of examples within a class and high
similarity of instances across classes. For instance, the positive examples of fly should consist
of a large variety of concepts associated with the property (e.g. birds, insects, vehicles).

A challenging distribution allows for a targeted instance-based analysis. In particular, we
can consider positive examples whose nearest neighbor in the dataset is a negative example
(e.g. fly: puffin vs. penguin) and vice-versa. The classifier behavior on such examples can
indicate whether a classifier could identify property information or whether it relied on other
signals (i.e. similarity to memorized examples, correlating information). We can investigate
this on test examples whose nearest training set neighbor is a member of the opposite class.

In addition, the example distribution described above increases the power of the control
task. We can only expect a high difference in performance between the target and control
classifiers if the target classifier has to go beyond general similarity to training set examples
to solve the target task. The power of the control task thus depends on the distribution of the
target data.

We use the full version of the diagnostic dataset (introduced in Part III). The dataset
consists of 21 properties with positive and negative example concepts. Where possible,
positive examples are taken from a diverse range of semantic categories. Negative examples
have been selected in such a way that they are similar to positive examples. Table 8.5 shows
the distribution of positive and negative examples and the set sizes when only considering
in-vocabulary words of the embedding models we use (details in Section 8.3.3). We split each
set into training and test (60%-40%).

8.3.2 Ceiling Task

We introduce a ceiling task to gauge the performance a classifier should be able to achieve
on representations that carry information about a semantic property given a particular dataset
size and distribution. We use words with a clearly marked female gender (positive class)
(e.g. nun, actress) and words with clearly marked male gender (e.g. actor, prince) or without
gender marking (negative class) as a ceiling dataset. Experimental results show that gender is
well encoded in distributional representations (Gonen and Goldberg, 2019, among others).
We use a gender dataset to mimic the size and class distributions of the property sets. If a

12We used the Googlenews embeddings for this step (see Section 8.3.3).
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full voc.
property pos neg tot. pos neg tot.

square 90 22 112 87 21 108
warm 133 36 169 124 32 156
black 90 53 143 78 45 123
red 92 69 161 87 64 151
fly 65 104 169 44 88 132
dangerous 77 60 137 65 51 116
wings 82 84 166 58 76 134
sweet 99 64 163 90 62 152
hot 103 43 146 100 43 143
used_in_cooking 106 65 171 100 54 154
juicy 92 64 156 84 59 143
green 94 69 163 89 66 155
made_of_wood 100 45 145 78 33 111
blue 60 110 170 59 106 165
yellow 43 88 131 43 74 117
roll 55 42 97 51 33 84
cold 70 24 94 68 24 92
round 103 20 123 96 18 114
wheels 78 27 105 69 25 94
lay_eggs 75 70 145 33 56 89
swim 101 47 148 79 38 117

Table 8.5: Size and class distribution in of the property sets in the diagnostic dataset (number
of words in the full set (full) and number of words present in all model vocabularies (voc.)).

classifier achieves high selectivity on the ceiling set, we assume that information is learnable
given the distribution of the property set.

To create such a dataset, we extended the female set created by Gladkova et al. (2016)
with a manually verified selection of hyponyms of the Princeton WordNet synset of person.
We randomly subsampled from the full set to mimic the class distribution of each property
set. As with the property sets, we only include words present in all three model vocabularies.
The female dataset did not contain enough positive examples in all model vocabularies to
mimic the distributions of used_in_cooking and warm. We created ceiling sets mimicking
the class distributions of all other properties.

8.3.3 Experimental Setup

In this section, we outline the components of our experimental setup: Firstly, we introduce
the embedding models whose representations are used as input for the probing classifiers.
Secondly, we describe the probing classifiers we use. Thirdly, we present commonly used
baselines for diagnostic classification. We use these baselines to show that they cannot provide
the same insights as a control task. Finally, we outline a validation procedure for the control
task.
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name type activation func-
tion

hidden layers nodes per layer

lr logistic regression - - -
mlp1 multi-layer perceptron relu 1 50
mlp2 multi-layer perceptron relu 2 50, 50
mlp3 multi-layer perceptron relu 1 100
mlp4 multi-layer perceptron relu 2 100, 100

Table 8.6: Overview of probing classifiers.

Embedding models

We experiment with three pre-trained distributional models with the same architecture but
trained on different corpora. They use the Continuous Skipgram with Negative Sampling
(SGNS) algorithm suggested by Mikolov et al. (2013b). We experiment with a model trained
on the full Wikipedia dump of 2017 (henceforth wiki) and a model trained on the Gigawords
corpus (henceforth giga) 13 and the GoogleNews model (henceforth google).14 The main
rationales behind the model selection were to use (1) well-performing representations that
are widely used (google and wiki) and (2) models whose underlying corpora are available
for further exploration in future work (wiki and giga, see corpus analysis in Chapter 7). We
expect differences in terms of property expression between Wikipedia texts and news texts as
they can be expected to emphasize different aspects of conceptual information.

Probing Classifiers

We experiment with a linear regression model (lr) and four multi-layer perceptrons (mlp).
The mlp models use a relu activation function and have 1 or 2 hidden layers consisting of
either 50 or 100 nodes (for details, see Table 8.6). We did not optimize the settings. We report
the mean performance over ten runs for each mlp probe.

Baselines

We compare against the following, simple baselines:

• random label assignment

• randomly initialized vectors (mean performance over 10 sets each)

• majority class assignment

We use the baselines to establish that the control task poses a considerably higher bar.

13Both trained following recommended settings by Levy et al. (2015). The models can be downloaded from:
https://bitbucket.org/PiaSommerauer/distributionalmodels.

14Downloaded from https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
edit.
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Control Tool Validation

We use several checks to establish that our control tools (i.e. the challenging example distribu-
tion in the property sets and the quality of the control task) used to interpret the diagnostic
classification results can provide meaningful results.

Firstly, we check the differences between the vector similarity distributions of the property
datasets. Ideally, the property sets should feature high example diversity within class (i.e.
low average similarity within class containing examples such as seagull, bee airplane for the
property fly) and high similarity across classes (e.g. fly: puffin vs. penguin). We calculate
mean pairwise cosine similarity among the words within the positive class and across the
positive and the negative class of a property. Overall, we can expect that a datasets with high
across-class and low within-class similarity will contain more challenging across-class pairs
with high similarity.

Secondly, we check whether the control task is a sufficiently high bar. We establish this
by comparing the performance of the probing classifiers on the control task to the baselines
mentioned above. The probing classifiers should clearly perform higher on the control task
than on the baseline tasks.

Thirdly, we check whether the control task sets are sufficiently different from the property
task sets. The similarity chain we use to form the control sets has the risk of assigning a large
proportion of positive or negative property examples to the same class in the control task.
Consider this (exaggerated) scenario: All positive examples of the property red are red fruits
and all negative examples are green vegetables. If we pick a random example to populate our
control set (e.g. strawberry), it is likely that its nearest neighbor comes from the same class
(e.g. raspberry). The same risk applies if the first random word comes from the negative class
(e.g. broccoli). Consequently, the control task would be almost equivalent to the property task
and thus become less informative. We check how many examples in the positive class in the
control set come from the same class (positive or negative) in the original set.

8.3.4 Results

We first validate the suitability of our diagnostic dataset and the control task. We then present
our diagnostic classification results.

Control tool validation

Similarity distribution For each property, we show the difference between the mean
positive-class-similarity and the mean across-class-similarity (summarized in Table 8.7). A
value below zero indicates that the across class similarity is, on average, higher than the
within class similarity (i.e. the property set is challenging). A value above zero indicates
that the examples in the positive class are, on average, more similar to one another than to
examples of the negative class (i.e. the property set is less challenging). All three embedding
models yield similar results. For the first five properties, across class similarity is higher than
within class similarity or at least equally high (red, round, roll, blue). This can be expected,
as the properties constitute perceptual attributes that tend to cut across different semantic
categories (e.g. colors can apply to a large variety of artifacts, but also natural things). For all
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other properties, the similarity within the positive class is higher. While the differences are
still rather low for most properties, we can observe that they are highest for properties that
tend to correlate with taxonomic categories (wheels, wings, used_in_cooking).

properties wiki giga google

red -0.01 -0.01 -0.01
round -0.01 -0.02 -0.02
black 0.00 -0.00 0.00
blue 0.00 -0.00 -0.01
made_of_wood 0.00 0.01 0.02
roll 0.01 -0.01 -0.00
yellow 0.01 -0.00 0.01
juicy 0.02 0.03 0.07
green 0.02 0.03 0.06
cold 0.03 0.03 0.04
sweet 0.03 0.03 0.05
swim 0.03 0.05 0.05
warm 0.03 0.03 0.03
hot 0.04 0.05 0.05
fly 0.05 0.02 0.06
dangerous 0.05 0.04 0.07
wheels 0.06 0.05 0.09
square 0.06 0.07 0.10
lay_eggs 0.06 0.06 0.11
wings 0.08 0.04 0.15
used_in_cooking 0.13 0.19 0.19

Table 8.7: Difference between the average pairwise similarities within the pos. class and
across classes (pos - pos_neg). Negative values indicate that the similarity across classes is
higher than the similarity within the positive class.

Control task performance All probes perform considerably higher on the control task
than on the baselines (Table 8.8), indicating that the control task is an easy task and therefore
provides a sufficiently challenging control tool.

Overlap between property task and control task On average, the control set does indeed
contain a considerable proportion of examples from a single original class (70% in the
property sets and 82% in the ceiling sets). However, a dataset containing 20% to 30% of
noise can be expected to considerably hamper performance, in particular given the relatively
small size of the individual sets. The degree of overlap differs between properties, as can be
observed in Table 8.9.

Probing analysis

We first analyze the results using selectivity and then explore particularly challenging exam-
ples.
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control lr mlp1 mlp2 mlp3 mlp4

wiki 0.76 0.75 0.76 0.75 0.76
google 0.82 0.81 0.82 0.81 0.81
giga 0.78 0.77 0.78 0.77 0.78

random labels

wiki 0.12 0.13 0.12 0.13 0.13
google 0.12 0.13 0.13 0.13 0.13
giga 0.12 0.13 0.12 0.13 0.13

random vectors

wiki 0.57 0.57 0.57 0.57 0.57
giga 0.57 0.57 0.57 0.57 0.57
google 0.57 0.57 0.57 0.57 0.57

majority

all 0.53

Table 8.8: Mean performance (weighted f1 score) on control set and baselines (random labels
and vectors, and majority).

property prop-set ceiling

red 0.54 0.86
square 0.88 0.99
fly 0.75 0.65
black 0.56 0.94
used_in_cooking 0.81 0.94
wings 0.69 0.67
made_of_wood 0.74 0.98
hot 0.77 0.94
sweet 0.63 0.87
green 0.62 0.82
yellow 0.57 0.62
juicy 0.65 0.79
blue 0.76 0.55
roll 0.59 0.83
lay_eggs 0.58 0.56
round 0.83 0.98
cold 0.75 0.96
swim 0.74 0.91
wheels 0.78 0.94
dangerous 0.69 0.78

mean 0.70 0.82

Table 8.9: Example overlap in control datasets.

Selectivity Figure 8.1 shows the probing results (F1) and selectivity scores (D) on the wiki
model for the property (p) and ceiling sets (c). All available ceiling sets show a selectivity
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Figure 8.1: Weighted f1 score ‘F1’ and selectivity ‘D’ of the property (p) and ceiling task (c)
in the wiki model.

d giga wiki googlenews

> 0 fly juicy lay_eggs square
sweet swim used_in_cook-
ing wheels wings

dangerous fly juicy lay_-
eggs made_of_wood
square swim used_in_-
cooking wheels wings
yellow

fly juicy lay_eggs square
sweet used_in_cooking
wheels wings

< 0 black blue cold dangerous
green hot made_of_wood
red roll round warm yel-
low

black blue cold green hot
red roll round sweet warm

black blue cold dangerous
green hot made_of_wood
red roll round swim warm
yellow

Table 8.10: Properties with positive and negative selectivity values in the three models (giga,
wiki, google).

clearly above 0 in the wiki embeddings. For clarity, we only show the top classifier.15

Figure 8.1 includes all five classifiers (logistic regression and 4 multi-layer perceptrons) for
properties, showing that they achieve similar performance and selectivity. We observe that
high performance does not necessarily mean high selectivity, but generally seems to correlate
with it. For the property roll, the difference between property set and ceiling set is particularly
stark (for selectivity and f1 score). In this case, the difference between ceiling and property set
is likely to indicate that information is learnable given the dataset size and class distribution
(indicated by high ceiling performance and selectivity), but the property-set does not seem

15The google embeddings do have one ceiling set score that remains below 0: the one mimicking green.
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to capture learnable property information. The analysis of the property datasets presented
in Chapter 7 showed that the property set for roll is indeed likely to be particularly difficult
for classifiers and to contain noise. Detailed results of all models and different classifiers are
provided in the appendix.

property diff same
tot. ✓ tot. ✓

abs. acc. abs. acc.

square* 3 3 1.00 39 38 0.97
used_in_cooking* 16 14 0.88 46 40 0.87
lay_eggs* 7 6 0.86 22 20 0.91
swim* 9 6 0.67 36 32 0.89
juicy* 20 13 0.65 37 29 0.78
wings* 5 3 0.60 41 38 0.93
yellow* 12 7 0.58 32 26 0.81
green 21 12 0.57 36 30 0.83
red 29 16 0.55 31 28 0.90
wheels* 6 3 0.50 32 30 0.94
dangerous* 14 7 0.50 28 27 0.96
round 9 4 0.44 28 27 0.96
made_of_wood* 7 3 0.43 30 25 0.83
blue 19 8 0.42 41 37 0.90
fly 12 5 0.42 36 33 0.92
hot 16 6 0.38 38 37 0.97
warm 15 5 0.33 45 45 1.00
black 13 4 0.31 31 27 0.87
sweet 14 4 0.29 47 37 0.79
roll 13 2 0.15 15 11 0.73
cold 7 1 0.14 25 24 0.96

Table 8.11: Number (n) and proportion (acc.) of correctly classified examples with different
class nearest neighbors (diff) and same class (same) nearest neighbors in the wiki model.
Properties marked with * have a positive selectivity score.

Properties The selectivity scores are generally lower for the property tasks than for their
respective ceiling tasks. For several properties, the selectivity scores are only marginally above
0. Table 8.10 shows the properties for which the probing classifiers obtained a selectivity
score above 0. When considering the successfully learned properties, it should be considered
that the properties lay_eggs and used_in_cooking (successfully classified for all models) run
a particular risk of containing accidental correlations (see analysis in presented in Chapter 7).

The different distributional models have the same outcome for 16 out of 21 properties.
The difference for the other 5 properties may be explained by the different genres they are
trained on. In contrast to the two new-based models, wiki seems to encode the properties
dangerous, made_of_wood, and yellow. It could be argued that these three properties are
more likely to be mentioned in descriptive, encyclopedic texts than in news texts. The property
yellow is the only color property with a selectivity score above 0, indicating that colors are
not well represented in corpus data.
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property diff same
tot. ✓ tot. ✓

abs. acc. abs. acc.

used_in_cooking* 10 9 0.90 52 49 0.94
lay_eggs* 7 6 0.86 23 21 0.91
sweet* 16 12 0.75 45 36 0.80
round 13 7 0.54 25 25 1.00
blue 21 11 0.52 39 34 0.87
hot 16 7 0.44 39 35 0.90
yellow 17 7 0.41 28 24 0.86
swim* 10 4 0.40 35 31 0.89
warm 13 5 0.38 50 45 0.90
fly* 11 4 0.36 37 34 0.92
red 28 10 0.36 33 29 0.88
wings* 6 2 0.33 40 36 0.90
roll 18 6 0.33 10 7 0.70
green 16 5 0.31 42 33 0.79
made_of_wood 11 3 0.27 26 24 0.92
black 15 4 0.27 29 27 0.93
wheels* 5 1 0.20 33 29 0.88
square* 5 1 0.20 37 37 1.00
juicy* 13 2 0.15 45 37 0.82
cold 9 1 0.11 24 23 0.96
dangerous 10 1 0.10 33 31 0.94

Table 8.12: Number (n) and proportion (acc.) of correctly classified examples with different
class nearest neighbors (diff) and same class (same) nearest neighbors in the giga model.
Properties marked with * have a positive selectivity score.

The properties with selectivity scores below 0 for all models constitute visual-perceptual
properties, inline with hypotheses and observations from previous work that this information
is probably not encoded. Properties with positive scores encompass a variety of property
types. As also found in previous work, several properties with positive selectivity for all
models correlate with taxonomic categories (wheels, used_in_cooking, wings).

Challenging examples A classifier that learned to identify a property should be able to
distinguish nearest neighbors that belong to an opposite class. For instance, the word rabbit
is the training example closest to test example duck according to the wiki embeddings. If
a classifier can identify the property fly, it should be able to recognize duck as a positive
example, despite its high similarity to the negative example rabbit. If a classifier generally
fails at identifying such different-class examples, it probably did not learn to identify property-
specific information. Instead, it may have relied on correlations (e.g. information about a
semantic category).

We compare classifier accuracy on different-class pairs (‘diff’) to nearest neighbor pairs
that belong to the same class (‘same’) in wiki (Table 8.11) and giga (Table 8.12). Unsurpris-
ingly, scores are consistently higher for same-class examples (between 0.95 and 1 in wiki and
0.70 for giga). For 10 out of 21 properties, the accuracy of different class examples is below
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property diff same
tot. ✓ tot. ✓

abs. acc. abs. acc.

roll* 7 7 1.00 21 19 0.90
lay_eggs* 5 5 1.00 25 23 0.92
hot* 8 8 1.00 47 47 1.00
swim* 11 10 0.91 34 34 1.00
yellow* 10 9 0.90 35 34 0.97
sweet* 19 17 0.89 42 41 0.98
green* 16 14 0.88 42 42 1.00
wings* 15 13 0.87 31 29 0.94
juicy* 19 16 0.84 39 39 1.00
made_of_wood* 6 5 0.83 31 30 0.97
dangerous* 11 9 0.82 32 31 0.97
black* 11 9 0.82 33 33 1.00
used_in_cooking* 10 8 0.80 52 50 0.96
round* 7 5 0.71 31 30 0.97
red* 17 12 0.71 44 42 0.95
wheels* 9 6 0.67 29 28 0.97
square* 6 4 0.67 36 36 1.00
blue* 16 10 0.62 44 43 0.98
fly* 7 4 0.57 41 39 0.95
cold* 6 3 0.50 27 27 1.00

Table 8.13: Number (n) and proportion (acc.) of correctly classified examples with different
class nearest neighbors (diff) and same class (same) nearest neighbors in the wiki model for
the ceiling sets. Ceiling sets marked with * have a positive selectivity score.

0.50 in wiki and for 16 out of 21 in giga. The highest score in giga (1.00) is achieved for the
property square. The low number of different-class nearest neighbor examples in combina-
tion with the relatively high within-class similarities may be an indication that the dataset
contained accidental correlations that help to distinguish positive from negative examples
without detecting property-specific information. In giga, square scores considerably lower
(0.20). The second highest score in wiki (0.88) is achieved for used_in_cooking (based on
16 examples), but also high similarity within the positive class. In giga, the highest score is
achieved for used_in_cooking (0.90 based on 10 examples).

In wiki, it can be observed that properties with a high selectivity score tend to show
relatively high performance on different-class examples. Seven of the ten properties with
positive selectivity score achieve an accuracy above 0.50, three score 0.50 or below. Most
properties with a selectivity score below 0 also score very low on different class examples. In
giga, this tendency can also be observed, but not quite as strongly. The three best performing
properties with a score of at least 0.75 also have selectivity scores above 0. The remaining
properties with selectivity scores of above 0 score below 0.50. In contrast, the corresponding
ceiling mimicking the property set distributions sets yield comparatively high scores (shown
for wiki in Table 8.13 ): For all but one ceiling set, the classifiers reach scores above 0.50 for
different class examples. 13 sets score 0.80 or above.

We explore the different-class nearest neighbor pairs for the properties shown in Table 8.14
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(wiki) and Table 8.15 (giga). Next to high semantic similarity or relatedness between examples
(e.g. deer-pheasant, rabbit-duck), we observe the following factors that are likely to be
challenging for a probing classifier:

• polysemous examples (bass, club, hack)

• instances that are only weakly associated with the property (fly: toy, machine; swim:
mammal)

• annotation inconsistencies: some mammals that can, but usually do not swim are treated
as positive examples, some as negative examples (lion-neg wolf -pos, deer-pos, llama-neg)

• vague examples: window can refer to a glass cover or a wooden frame around it

Though a successful model should be able to identify polysemous examples (unless the
intended meaning is very rare), these vague examples could be instances that do not encode
the property even though other instances do. Correctly classified pairs also include polysemy
(e.g. lay_eggs: duck-cock) and classifications of challenging examples related to fine-grained
subcategories wheels: passenger-luggage, lay_eggs: whale-albatross). Based on this small
number of examples, we suspect that the models can pick up relatively fine-grained taxonomic
classes, but do not necessarily learn the isolated properties. To confirm this, a larger and more
systematic analysis would be required.

To summarize, the results of the ceiling task provide strong indications that probes can
indeed identify information given small and skewed data distributions if the information
in question provides a strong signal. For gender marking, selectivity scores are high and
challenging examples tend to be classified correctly. For the property datasets, however, we
could not identify equally strong signals. Previous work suggests that embeddings (partially)
encode taxonomic property knowledge, but not visual properties. Our results are in line with
this as they reveal weak positive selectivity scores for taxonomic properties and below zero
selectivity scores for visual properties. Low performance on challenging examples leads us
to suspect that classifiers pick up evidence of fine-grained taxonomic structures rather than
isolated semantic properties.

8.3.5 Conclusion

In this study, we applied a probing analysis of lexical embedding representations with respect
to semantic properties. We addressed the known problem of probing that imperfect above-
chance performance is difficult to interpret by applying two control analyses (selectivity and
challenging examples) and a ceiling task (gender encoding).

Combining vanilla probing with these two control tools and the ceiling tasks led to the
following insights on probing in general and identifying semantic properties in particular. In
general, our results show that probing, in combination with control tasks, can indeed detect
information in embedding representations if there is a strong signal. Gender information is
encoded systematically in co-occurrences. This is reflected in high selectivity scores and high
accuracy on challenging examples, even on relatively small and imbalanced datasets.
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property correct incorrect

fly deer-quail* penguin-puffin*
flycatcher*-watchdog loon*-van
gull*-barnacle

tractor-machine* rabbit-toy*
interceptor-twinjet* interceptor-
bomber* interceptor-jet* rabbit-
duck* deer-pheasant*

dangerous hornbill-hippopotamus* rabbit-
coyote* malaria*-cure killer*-jack
hammer*-hoe alligator*-turtle
snake*-toad

starter-club* crowbar-punk*
tuck-raper* crowbar-nightstick*
bootlegger*-businessman sword*-
elixir shaft*-pusher

lay_eggs whale-albatross* cow-chicken*
whale-leatherback* rattlesnake*-
howler duck*-cock crocodile*-
giraffe

rattlesnake*-mole

made_of_wood strap-pin* knife-toothpick* strap-
footrest*

pulley-shaft* window*-date pencil*-
pen bass*-pedal

swim bat-runner* chicken-duck* lion-
wolf* roach-guppy* albatross*-
cockatoo deer*-llama

squirrel-armadillo* mammal*-
bonobo mammal*-colobus

wheels driver-coach* winch-rig* passenger-
luggage*

backhoe*-hack locomotive*-diesel
cab*-windshield

Table 8.14: Examples of correctly and incorrectly classified examples with different-class
nearest neighbors in the training set for the wiki embeddings. The first example always
corresponds to the training example, the second to the test example. Words marked with * are
positive examples of the property.

For semantic properties, we learned that imperfect performance on the target set cannot
be (solely) attributed to skewed datasets, since the ceiling sets mimic these distributions. Sec-
ondly, the selectivity analysis shows that the probing signal picked up for several taxonomic
categories goes beyond general similarity, while it confirms the result that visual-perceptual
information is not encoded. Thirdly, our analysis on challenging examples indicates that,
nevertheless, these results do not seem to be the result of identifying isolated properties,
but rather of learning fine-grained categories. Overall, these results are inline with previous
work stating that taxonomic properties are (partially) present and visual properties are absent.
Future work with more systematic error analysis (notably concerning vague examples) could
shed a light on whether learning fine-grained categories is indeed the explanation for these
results.

Overall, we conclude that our methodological controls (selectivity, challenging examples
and the ceiling task) together considerably improve the interpretation of probing results.
In particular, challenging examples allowed us to go beyond selectivity showing that weak
positive signals do not seem to indicate isolated property knowledge after all. The ceiling
task enabled us to rule out that this result is solely due to the size and class imbalance.
Nevertheless, we do not have conclusive answers for weak signals. Future work will have
to show whether further data analysis can address this, or whether probing reaches its limits
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property correct incorrect

fly penguin-puffin* loon*-chow
budgie*-rudd pelican*-barnacle

tractor-machine* rabbit-toy*
interceptor-arrow* zebra-marabou*
penguin-nightingale* deer-
pheasant* deer-quail*

dangerous iodine-neurotoxin* bar-club* rabbit-coyote*
blunderbuss*-bill malaria*-cure
thief*-businessman thief*-pusher
knife*-hoe alligator*-turtle snake*-
toad

lay_eggs whale-leatherback* crane*-hack
platypus*-howler crane*-hackney
halibut*-mole crocodile*-giraffe

hobby-lark*

made_of_wood wheelbarrow-chock* wheel-clock*
knife-toothpick*

saxophone-guitar* chimney-shaft*
window*-date stool*-anchor
pencil*-pen dowel*-screw roof*-
windshield broom*-trowel

swim chicken-cob* roach-loach* painter*-
sweeper retriever*-cockatoo

chicken-goat* chicken-duck*
mammal*-bonobo deer*-llama
mammal*-colobus frog*-owl

wheels passenger-luggage* tugboat-rig* passenger-airplane*
machine*-hack car*-windshield

Table 8.15: Examples of correctly and incorrectly classified examples with different-class
nearest neighbors in the training set for the giga embeddings. The first example always
corresponds to the training example, the second to the test example. Words marked with * are
positive examples of the property.

here.

8.4 Summary

In this chapter, I have presented two diagnostic studies that aim to test whether context-free
embedding representations contain information about different semantic properties. Both
studies approach the challenges of diagnostic classification through control tools. The purpose
of these tools is to distinguish high probing performance caused by property-identification
from high probing performance caused by accidental correlations (e.g. in an extreme scenario,
all positive examples of fly are in the category BIRD, all negative examples in the category
FURNITURE) or memorization (meaning that the classifiers simply assign labels based on
general similarity to training examples).

The results of the first study provided the following, preliminary indications: (1) Visual-
perceptual properties achieved low performance in the probing task, which indicates that
they are most likely not encoded well in embedding vectors. (2) The results provided some
indications that properties connected to activities and functions may be encoded in embedding
representations (in particular for the properties used_in_cooking, wheels, and dangerous.
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However, the study is limited by the fact that the pilot version of the diagnostic datasets
are likely to contain correlations (in particular with taxonomic categories). The comparison
to nearest neighbor classification is not necessarily fine-grained enough to eliminate the
possibility that the classifiers simply relied on such factors.

The second study approaches the methodological problems of diagnostic classification by
exploiting the challenging example distribution of the full diagnostic dataset and a semantic
control task. The semantic control task poses a challenging baseline: Classifiers can achieve
high performance on it by relying on general semantic similarity without identifying the target
information in the embeddings. The challenging distribution of examples allows for a targeted
error analysis which can provide insights into whether probing classifiers could distinguish
highly similar examples that differ with respect to the target property. In addition, the study
employed a ceiling task which established determine whether information is learnable given
small datasets with skewed class distributions.

The results of the control task clearly indicate that overall, property-information performs
much lower than gender-marking used in the ceiling datasets. Properties that did consistently
perform highly tend to correlate with relatively coherent semantic categories (e.g. used_in_-
cooking, lay_eggs, wheels, juicy, fly). The analysis of challenging examples showed that the
classifiers are not well-equipped to distinguish highly similar examples with respect to the
target properties (e.g. rabbit and duck could not be distinguished with respect to fly). The
relatively low selectivity scores in combination with the low performance on challenging
across-class examples may indicate that the classifiers learn to identify fine-grained semantic
categories rather than property-specific information.

Despite our control tools, the following limitations remain: Firstly, despite the controlled
dataset distributions, there is still a risk of accidental correlations between the examples of
a class. Secondly, diagnostic classification assumes that the target information is encoded
in the majority of examples in the train and test set. If the information is only encoded in a
proportion of examples, the classifiers will inevitably fail or rely on other ‘clues’ to perform
the task. To shed more light on whether property information is likely to be encoded in the
property-examples, I turn to an analysis of the corpus data underlying the embedding models
in Chapter 9.
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9. Evidence Analysis in two Corpora

9.1 Introduction

‘Diagnosing’ semantic properties in diagnostic classification experiments (Chapter 8) has a
central problem: Even if classifiers can successfully perform the diagnostic classification
task (e.g. distinguish positive and negative examples of the semantic property red on the
basis of embedding representations of words such as strawberry and dog), it remains difficult
to determine whether the classifiers have indeed identified evidence of the target property
or whether they have relied on other features that happened to correlate with the target
information. The diagnostic dataset used for the experiments was specifically designed to
reduce the chance of such correlations (Chapter 4). Nevertheless, the analysis of classification
errors presented in the previous chapter provided reasons to question whether the classifiers
have indeed identified property-specific information in the embedding vectors. Even high
performing classifiers struggled with distinguishing highly similar pairs of positive and
negative examples (e.g. fly: duck v.s. rabbit). A possible explanation of this classification
behavior could be that the classifiers identify fine-grained semantic categories that correlate
with many but not all examples in the datasets. This chapter presents an analysis of the
corpus data underlying the embedding models to verify these findings. The corpora under
consideration are the data underlying two of the three embedding models used for diagnostic
experiments:

• Wikipedia full dump 2018 (henceforth wiki)

• Gigawords 5th edition (henceforth giga)

To extract candidates of property expression from the corpus data, I rely on the contrastive
nature of the dataset. The positive and negative examples of each property can be used to
compare the contexts of positive examples against the contexts of negative examples (e.g.
fly: contexts of seagull v.s. contexts of penguin). If semantic properties are mentioned in
the contexts of concepts, this type of contrastive analysis should highlight them, as property
expressions should be represented more strongly in the context of positive examples than of
negative examples. The details of the method used for evidence extraction and analysis are
provided in Section 9.2.1

Section 9.3 presents an analysis of the extracted candidates for property-evidence. The
results indicate that most properties are, at least to some degree, expressed by property-specific
linguistic expressions (e.g. the property red is expressed by the adjective red). Positive
examples of properties also co-occur with other concepts that share the target property (e.g.

1The code used for the context extraction and analysis can be found in this repository: https://github.
com/PiaSommerauer/CorpusDiagnostics.
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CHAPTER 9. EVIDENCE ANALYSIS IN TWO CORPORA

bird names in the dataset for the property fly tend to co-occur with other bird names). I
refer to this type of indirect property-evidence as ‘property-instances’. Positive examples
also tend to co-occur with words related to the property via thematic associations (e.g. flying
vehicles in the dataset for fly tend to co-occur with thematically related concepts such as
pilot). I refer to this latter type of property-evidence as ‘property-related words’. To gain
insights into what type of information diagnostic classifiers are likely to have picked up, I
analyze the relation between property evidence in corpus data and the results of the diagnostic
experiments presented in the previous chapter. The results indicate that property-instances
and related words are more likely to be represented strongly in the embeddings and picked
up by diagnostic classifiers than property-specific evidence. This finding strengthens the
hypothesis that distributional co-occurrence patterns tend to encode fine-grained semantic
categories rather than semantic properties.

A second purpose of the corpus analysis presented in this chapter is to gain deeper insights
into the expression of semantic property evidence in corpus data. Previous research has argued
that specific types of properties are more likely to be expressed than others (e.g. taxonomic v.s.
perceptual properties (Rubinstein et al., 2015)). The diagnostic dataset presented in this thesis
is based on a model of the dynamics of property expression in textual data (introduced in
Chapter 3). The model’s fundamental assumption is that the expression of semantic properties
in corpus data depends on the relation between a specific concept and the property in question.
The relations between properties and concepts are based on factors that are likely to influence
whether property information is made explicit. For example, highly implied information
(expressed by the property-concept relation implied_category) is not expected to be
made explicit (e.g. mammal - cat). In contrast, information that is relevant for how we interact
with the world (e.g. cut-scissors) is expected to be mentioned. In addition to property types
and property-concept relations, it can be expected that the genre of a corpus also impacts what
type of conceptual information is expressed. For instance, encyclopedic texts can be expected
to be more explicit about highly implied knowledge, while news texts can be expected to
emphasize events (which likely mention afforded actions).

Section 9.4 presents an analysis of property evidence with respect to property-concept
relations (the central component of the theoretical framework presented in Chapter 3), genre,
and property types. As explained in Chapter 7, the analysis of property-concept relations
is complicated by interactions between different relations. To address this issue, I use two
complementary strategies of assigning property-concept pairs to specific relations. The results
provide initial indications that are, at last partially, in line with the hypotheses derived from
the theoretical framework presented in Chapter 3. It seems that property evidence is likely to
be mentioned if a property affords a specific activity (e.g. having sharp edges affords cutting
with scissors). Initial tendencies also indicate that variability between properties (e.g. an
apple can be red, green, or yellow) may lead to more explicit property expressions. The latter
tendency has also been observed in contemporary research about the reporting bias (Paik
et al., 2021). The analysis on the level of individual properties showed weak tendencies in line
with previous research: Overall perceptual properties seem to be expressed less strongly than
other properties. However, this trend is not consistent across all properties. This inconsistency
is expected according to the hypotheses presented in Chapter 3.
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9.2 Data and Method

In this section, I provide an overview of the methods used for context extraction and analysis.
Section 9.2.1 outlines the extraction of concept-contexts from corpus data. In a next step, I
extract property-evidence candidates from the contexts by means of a contrastive analysis of
positive and negative property-examples (Section 9.2.2). I annotate the extracted evidence-
candidates with respect to whether they can be seen as evidence of the respective semantic
property under investigation (Section 9.2.3). Based on the annotated evidence, I employ
different measures to analyze the degree to which property evidence is represented among the
examples of a property (Section 9.2.4).

9.2.1 Corpora and Context Extraction

To get insights into the information distributional models can exploit, I analyze the contexts
which are used to train word embedding models. In the standard set-up of training a context-
free distributional model, word-context pairs are extracted from a pre-processed corpus. I use
the same extraction process as the one used by the Word2vec implementation of the skip-gram
with negative sampling (SGNS) method to ensure that the data under investigation reflect the
same information as the models used in the diagnostic classification experiments.

The word-context extraction is dependent on a number of hyper-parameters of the model.
The models under consideration were trained using the recommended settings based on
an analysis of hyper-parameters by Levy et al. (2015). The most important setting for the
word-context extraction from the raw data is the window size. As recommended, I used a
window size of 2 (meaning that the model ‘sees’ two words left and right of the a target word).
In addition to window size, the following factors also affect the creation of word context pairs:
The SGNS algorithm uses sub-sampling to remove highly frequent words from the training
data. The method also removes rare words. Both sub-sampling and removing rare words are
done before the word-context pairs are created.

9.2.2 Extraction of property-evidence candidates

It is hardly feasibly to analyze all linguistic contexts of all positive examples of a property by
hand. Instead, I employ the following criteria to capture candidates that are likely to function
as property-evidence:

1. Contexts should be particularly salient in the positive examples of a property when
compared to the contexts of its negative examples.

2. Contexts should be particularly good at distinguishing positive examples of a property
from negative examples.

In addition to limiting the scope of the analysis, prioritizing salient and distinctive contexts
reduces the chances of noise. Salience and distinctiveness are defined below.
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Salient Contexts

To identify contexts that are particularly salient in the contexts of positive examples of a
property, I use a frequency measure commonly applied in information retrieval. The original
goal of the measure is to identify terms that are particularly salient in a specific document. For
example, such salient terms can be used to match documents with search terms. To find salient
words for a given document, the frequency of a term t within a document d is compared to
the number of documents N it appears in (out of all documents D). Words that are frequently
used within specific document, but only appear in comparatively few documents can be
seen as characteristic of the document and thus receive a high value. This notion has been
formalized as term frequency-inverse document frequency (tf -idf ) (Spärk Jones, 1972). Term
frequency is defined as the normalized frequency of a word in a document:

tf(t, d) =
ft,d∑

t′∈d ft′,d
(9.1)

Inverse document frequency is defined as:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(9.2)

Term frequency - inverse document frequency then becomes:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (9.3)

I use this intuition to find contexts of positive examples of a property that are particularly
salient when compared against contexts of negative examples of a property. If the property is
expressed, the salient contexts should include expressions of the property. For example, when
comparing the contexts of the word strawberry against the contexts of negative examples of
the property red (e.g. pineapple, orange, mango, banana), the word red should be among the
most salient contexts of strawberry if it is mentioned explicitly and consistently. I thus adapt
the tf-idf definition to measure the salience of a context word for a particular target word as
follows:

Context frequency. All context words of a target word (i.e. a positive example of a
property) are treated as a single document. Together, the contexts represent the target word w.
To calculate the frequency of a particular context word c for a particular word w, I simply
apply term frequency as follows to calculate ‘context frequency’ (cf ):

cf(c, w) =
fc,w∑

c′∈w fc′,w
(9.4)

Inverse word frequency. To contrast the relevance of the context word for the target
word against the negative examples, I treat the context words of each negative example as a
document wneg. Together, they form a collection of negative example words Wneg. I count
the number of times N the context word appears in the contexts of a negative example and
calculate ‘inverse word frequency’ as follows:

iwf(c,Wneg) = log
N

|{wneg ∈ Wneg : c ∈ wneg}|
(9.5)
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Based on context-frequency and inverse word frequency, I calculate the cf -iwf ’ score:

cfiwf(c, w,Wneg) = cf(c, w) · iwf(c,Wneg) (9.6)

I use this definition to calculate the cf-iwf score of each context word of each positive
example concept and keep all contexts with the top 10000 cf-iwf scores.2 I also calculate the
cf-iwf scores for context words of negative examples. For contexts of negative examples, the
calculation is simply flipped: Each negative example concept is treated as a document and the
contexts of all positive examples are used as the corpus for comparison.

The cf-iwf values of contexts of positive and negative examples can be used to establish
whether a context word is particularly salient for a given positive example of a property. I
use the following inclusion criteria to collect salient contexts: (1) I include all words that do
not appear as context words of negative examples. (2) Out of the words which do appear as
context words of negative examples, I include words that have a higher cf-iwf value than their
mean cf-iwf value calculated over all negative examples.

Within-semantic category comparison. A central characteristic of the diagnostic dataset
is that the examples of properties are sampled from different semantic categories. For example,
the positive and negative examples of the property fly contain, among others, words in the
categories BIRD, VEHICLE, and FOOD. When comparing a positive example from the category
BIRD against all negative examples, the cf-iwf measure runs risk of identifying contexts
that are specific to the semantic category rather than the property fly. Therefore, I limit the
comparison against positive/negative contexts to words within the same semantic category as
the target word. For example, I calculate cf-iwf scores for the contexts of the word seagull by
means of comparing it to all negative examples in the category BIRD instead of the full range
of negative examples.

To exploit the semantic categories represented in the dataset to their full extent, I make
use of the original WordNet synsets used to retrieve candidates for the diagnostic dataset
(see Chapter 4 for details). Specifically, I attempt to sort all positive and negative examples
retrieved via a source that did not supply category information (e.g. the semantic space or
property norms) according to the synsets via their WordNet synsets and hyponymy relations.
Only words for which I cannot find a semantic category remain in their original, general
category.

Despite controlling for the semantic categories, high cf-iwf scores still indicate contexts
that are highly specific to a particular example concept. For instance, when considering the
property fly in the giga corpus, the top context of the word nightingale is Florence and the
fourth most specific context of the word seagull is Jonathan3. Words that can act as potential
property evidence tend to be ranked highly, but not necessarily on top (e.g. flies appears on
rank 13 for seagull). Context salience alone is not sufficient to detect good property-evidence
candidates. I use an additional measure to select relevant evidence words from all salient
context words.

2I use the tf-idf implementation in Scikit Learn (Pedregosa et al., 2011).
3Novel: Jonathan Livingston Seagull by Richard Bach
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Distinctive Contexts

Good property-evidence candidates should serve as a distinguishing feature between positive
and negative examples. For instance, the word red expressing the property red should only
co-occur with positive examples. I use the salient evidence candidates to find the most
distinctive contexts. I measure distinctiveness as follows: I use a particular context word
to distinguish positive from negative examples of a property. For instance, for the property
red, I consider the context word red and calculate how well it distinguishes positive (e.g.
strawberry) from negative examples (e.g. grass). I calculate the performance of the context
word in terms of its precision and recall (summarized by the f1-score). I select the context
words with the top three f1 scores per semantic category for further analysis. This results
in substantial sets of property-evidence candidates (shown in Table 9.1), as multiple words
can have the same score and many property datasets have concepts in a variety of different
semantic categories.

giga wiki

square 1504 441
warm 2108 1181
black 1149 819
red 1767 1275
fly 952 55
dangerous 1114 627
wings 560 332
sweet 35 26
hot 84 92
used_in_cooking 572 705
juicy 810 122
green 578 550
made_of_wood 786 497
blue 2234 1818
yellow 52 111
roll 3886 3485
cold 1081 590
round 520 1034
wheels 244 105
lay_eggs 74 26
swim 1381 1700

female (control) 45 109

Table 9.1: Overview of evidence candidates per property in the giga and wiki corpus.

To validate the context selection strategy based on salience and distinctiveness, I present
an overview of the extracted contexts from the giga corpus in Table 9.2. The table shows
the total number of extracted contexts, the f1 score of the top-ranked contexts and the top
contexts themselves.4 Several contexts either express a property directly or are closely related

4The top f1 score is calculate on the basis of the mean f1-scores over all semantic categories with at least ten
positive and negative examples.
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to it (e.g. red, made_of_wood, dangerous, and female). For other properties, the top
distinctive contexts are entirely unrelated (as can be observed for the properties swim and
warm). This outcome is expected, as some properties may have fewer evidence expressions
in the corpus. As in the experiments presented in Chapter 8, the property female is used as a
control. The fact that sensible context words could be extracted for the control property is
a strong indication that the extraction method based on salience and distinctiveness yields
highly relevant candidates for property-evidence. This is also confirmed by other examples
in the table. The total sets of evidence candidates (i.e. all extracted evidence candidates) are
used for further analysis.

property f1-mean contexts

used_in_cooking 0.94 add recipe fish
fly 0.90 payload study experimental hovering flew overhead
green 0.86 place shade belongs green citrus
square 0.85 built
blue 0.85 magic bright scale various european
lay_eggs 0.83 eggs
hot 0.83 flame oven remove hot
sweet 0.83 banana potato sweet
yellow 0.83 sipping operating apple yellow good bubbly apples
black 0.83 grandmother suddenly named tracking introduction fire
juicy 0.82 banana ripe pineapple for
wheels 0.82 truck driver drove wheel
dangerous 0.82 killed
cold 0.82 fresh variety contains
roll 0.79 35 half
red 0.79 red intense wine currant burst black summer picked
swim 0.78 takes name fish
round 0.78 annual
wings 0.76 wings bird
warm 0.75 heavy
made_of_wood 0.69 wooden

female (control) 0.84 actress birth herself

Table 9.2: Contexts with the top distinctiveness score for each property in the giga corpus.
Multiple contexts can have the same score. The mean f1 score represents the mean of the
f1-scores resulting from all semantic categories.

9.2.3 Evidence annotation

The evidence candidates extracted on the basis of salience and distinctiveness are particularly
likely to impact embedding representations and diagnostic classification results. Furthermore,
the extracted candidates are characteristic of the contexts of positive example concepts. They
may yield insights into what type of property evidence embedding models could have picked
up. They also serve as a dataset for testing theoretical assumptions about the expression of
property evidence introduced in Chapter 3.
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As a basis for further analysis, I manually categorize the evidence candidates according to
types of property-evidence. The categories used for this annotation process are based on the
evidence types introduced in Chapter 3 and are summarized again in Table 9.3. For example,
property-evidence consist of words directly expressing the property (e.g. red: red), words
that strongly imply the property (e.g. fly: land), words that are instances of the property (e.g.
blue: sea), or words that are thematically related to the property (e.g. swim: sea).

specificity label explanation examples

p direct expression of the property warm-warm, lay_-
eggs-eggs

prop. spe-
cific

n near synonym of the property hot–heated

l logical or highly likely implication hot-burning

i instance of the property (i.e. Something that has
the property)

red–blood

non- r thematically related to the property swim–sea
specific b associated with the property via cultural biases female–beautiful

unrelated u unrelated to the property blue–magic

Table 9.3: Types of property-evidence.

giga wiki
p n l i r b u p n l i r b u

square 0 0 0 62 2 0 1440 0 0 0 28 0 0 413
warm 4 2 3 90 22 0 1987 1 0 6 61 15 4 1094
black 1 0 1 46 9 0 1092 1 1 2 53 6 0 756
red 1 0 0 89 6 0 1671 1 0 0 91 2 0 1181
fly 6 1 2 8 31 3 901 4 0 1 9 9 0 32
dangerous 2 7 14 44 60 6 981 1 1 4 33 36 0 552
wings 2 0 5 27 38 15 473 0 0 6 28 22 1 275
sweet 2 0 0 19 0 0 14 1 0 0 10 0 0 15
hot 2 1 0 15 7 0 59 2 2 4 11 6 0 67
used_in_cooking 4 2 2 188 173 0 203 2 5 2 132 126 1 437
juicy 2 0 0 88 12 0 708 1 0 0 20 3 0 98
green 1 0 0 87 8 0 482 1 0 0 68 8 0 473
made_of_wood 4 0 0 19 27 0 736 9 0 0 15 19 0 454
blue 2 0 0 157 10 0 2065 1 0 0 136 8 0 1673
yellow 1 0 0 3 0 0 48 0 0 0 8 0 0 103
roll 5 0 5 95 44 0 3737 3 0 7 79 41 0 3355
cold 1 5 0 48 19 0 1008 1 1 0 24 3 0 561
round 1 0 1 38 2 0 478 2 1 1 42 1 0 987
wheels 2 0 2 13 23 0 204 3 0 2 9 18 0 73
lay_eggs 2 0 0 13 7 0 52 0 0 0 9 4 0 13
swim 1 0 0 12 41 0 1327 2 0 0 33 42 0 1623
female (control) 0 0 3 7 0 7 28 1 0 2 14 0 5 87

Table 9.4: Overview of annotation.
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The types of evidence fall into two broad categories: property-specific evidence and non-
specific evidence. Property-specific evidence indicates a property directly, while non-specific
evidence is less targeted and only points to the property indirectly, via lexical associations (e.g.
via related concepts such as pilot for the property fly). This type of evidence can point towards
fine-grained semantic categories (e.g. flying vehicles) that largely overlap with instances of
the property. Overall, it is a less reliable source of evidence. In addition to property-specific
and non-specific evidence, the extraction method also yielded words that are entirely unrelated
to the property. Such words can still serve as evidence for a diagnostic classifier. However,
it is important to note that they are semantically not related to the property in question. If a
diagnostic classifier relied on such expressions, it did not identify evidence of the semantic
property.

To ensure that the categorization was done consistently, I applied the following checks:

• The annotations were done separately for each corpus. This means that the same context
may have been annotated twice. I checked whether the annotations of the same contexts
are consistent between the two corpora.

• Instances of a property should be annotated as a type of property evidence. Positive
examples themselves can appear as property instances in the contexts of other positive
examples. I used the positive examples from the property datasets to check if all positive
examples have been annotated correctly as property instances if they appeared as context
words.

• I used manually compiled lists of words expressing the property directly (e.g. red: red) to
identify direct property expressions.

The distribution of evidence types over all evidence candidates is presented in Table 9.4.
The largest group of evidence words tends to consist of unrelated words. Property-instances
and related words also constitute substantial components. The categorized context words
allow for various analyses of the expression of property evidence. The following section
introduces different measures of evidence representation in the corpora.

9.2.4 Measuring evidence

In this section, I introduce four different measures of property evidence that can be used to
analyze the annotated set extracted contexts presented in the previous section. The goal of the
measures is to establish how strongly different types of property evidence are represented
in the corpora. Evidence that is represented strongly is more likely to impact embedding
vectors and to be identified by diagnostic classifiers than evidence that is represented weakly.
Being able to compare property evidence also enables testing specific hypotheses about the
expression of property evidence.

Proportion of evidence The extraction method based on salience and distinctiveness yielded
sets of evidence candidates per property. For examples, for the property green, 578 candidates
were extracted from the giga corpus and 550 from the wiki corpus. The candidates were then
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annotated with respect to different types of evidence. For instance, the context word green
was labeled as property-specific evidence, whereas the word peas was labeled as property-
instance. Contexts entirely unrelated to the property were annotated as unrelated evidence
(e.g. mild). Based on these annotations, it is possible to calculate the proportion of evidence
candidates of a particular evidence type. For instance, the proportion of property-specific
evidence can give a first indication of how well property-specific evidence is represented in
the corpus data. A high proportion of property-specific evidence words means that many
of the salient and distinctive contexts are, in-fact, reflections of the target property. The
proportion of property-evidence can be calculated on the level a property (e.g. the entire
dataset for green) as well as on the level of a specific positive example concept (e.g. grass).
To calculate proportion of evidence on the level of an individual concept, I count how many
of the evidence candidates in the contexts of a particular concept serve as property evidence.
This calculation can be performed for each type of property evidence.

Evidence coherence Whether property-evidence can be encoded in embedding vectors is
likely to depend on the lexical coherence of evidence words. If all evidence words of a property
are semantically very similar, they are more likely to impact the embedding representation
of the positive property examples in such a way that the evidence can be recognized by
a diagnostic classifier. The most extreme version of lexical coherence would be a single
evidence word (e.g. red: red) that systematically occurs in all contexts of positive examples.
If embedding models can indeed abstract over similar evidence words (e.g. dangerous:
risky, threatening, dangerous), multiple semantically similar evidence words should also
be effective. In contrast, semantically different evidence words are unlikely to be encoded
systematically in such a way that they are recognizable by a diagnostic classifier. For example,
if property-evidence of a color property is primarily expressed by instances of the example
contexts (e.g. blue: sea, paint, car, jeans), it is hardly possible for a diagnostic classifier to
detect commonalities between the positive examples. I measure coherence in terms of mean
cosine similarity of all possible pairs of evidence words.

Evidence distinctiveness I measure the distinctiveness of individual evidence words by
means of their ability to distinguish positive from negative examples. This can be quantified in
their precision and recall (summarized as f1 score). The more positive examples an evidence
word can distinguish from the negative examples of a property, the higher the chances that
enough vectors of positive examples carry property information that could be identified
by a diagnostic classifier. Each of the extracted contexts has a distinctiveness score. The
distinctiveness of a set of contexts (e.g. all property-specific evidence words of the property
fly) can be analyze by calculating the mean distinctiveness score over all property-specific
evidence words.

Evidence strength I establish how strongly property evidence is represented in the context
of a concept by means of its raw cf-iwf score. If an evidence word is expressed frequently
in the context of a concept (and infrequently in the contexts of the negative examples) it
receives a high cf-iwf score. The raw scores can be used on the level of individual concepts.
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To analyze a set of examples, the strength scores of individual examples can be summarized
by the mean score.

The four measures presented in this section are by no means independent of one another.
Rather, they are likely to be correlated (e.g. a high cf-iwf score is likely to be correlated with
high distinctiveness). However, they can highlight slightly different characteristics of the
property evidence.

9.3 Analysis 1: Property-evidence and diagnostic classification

In this section, I explore the relation between property-evidence and successful diagnostic
classification. The context words extracted based on their salience and distinctiveness are
likely to impact embedding representations. However, not all of them can be expected to
impact the embeddings equally strongly. The goal of this section is to gain deeper insights
into what type of property evidence is most likely to have been detected by diagnostic
methods (discussed in Chapter 8). If the diagnostic classifiers have detected evidence of the
semantic property in question (e.g. fly), property-specific evidence (fly, flew, land) should
be represented in the underlying corpus data most strongly. If the diagnostic classifiers have
detected information about fine-grained semantic categories, property-instances (e.g. robin,
sparrow, airplane) and related words (e.g. nest, pilot) should be represented strongest. If the
classifiers have relied on accidental correlations rather than information about the property,
words unrelated to the property should be represented best. Before presenting the results of
this comparison, I describe the details of the comparison setup.

9.3.1 Measuring Evidence Representation on the Level of Properties

The goal of this analysis is to establish what type of property evidence is likely to have
an impact on embedding representations and to be picked up by diagnostic classifiers. To
analyze property evidence candidates, I calculate the measures presented in Section 9.2.4 on
the level of individual properties. This enables a comparison between different property types.
In particular, I distinguish between property-specific evidence (direct property expressions,
near synonyms and logical or highly likely implications), non-specific evidence (property
instances, related words, and social biases), and unrelated words (refer to Section 9.2.3 for a
detailed overview of evidence types). The measures are calculated as follows:

• Evidence proportion: The proportion of evidence words of a particular type (e.g. property-
specific) out of all extracted evidence word candidates (between 0 and 1).

• Coherence: Mean cosine similarity of all possible pairs of evidence words of a particular
evidence type (e.g. property-specific) (between 0 and 1).

• Mean and maximum evidence distinctiveness: The mean f1-score of evidence words of a
particular type and the score of the best performing evidence word of a particular evidence
type (between 0 and 1).
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• Mean and maximum evidence strength: The mean cf-iwf score of evidence words of a
particular type and cf-iwf score of the evidence word of a particular type with the highest
score (between 0 and 1).

The measures enable a comparison between different evidence types. Each score can
be calculated for each of the three types of evidence under consideration (property-specific,
non-specific, unrelated). The scores are only meaningful when put into comparison to one
another. It is unclear what level of evidence proportion, coherence, and strength of evidence
words is required for them to impact embedding representations and to be detected by a
diagnostic classifier.

To illustrate the behavior of the different measures, I show the results for nine properties
in the giga corpus in Table 9.5. The table shows the scores for property-specific evidence per
property. The results differ between the properties: the control property female clearly ‘wins’
in terms of proportion, but does not score highest for any of the other measures. In contrast,
juicy and lay_eggs have a lower proportion, but score comparatively highly for the other
scores. In general, it can be observed that the scores vary; scoring highly for one measure
does not necessarily mean scoring highly for all measures. This supports the intuition that the
scores highlight slightly different aspects.

proportion coherence dist-mean dist-max str-mean str-max

dangerous 0.0206 0.2389 0.7224 0.8404 0.0034 0.0095
swim 0.0007 1.0000 0.6726 0.6726 0.0035 0.0035
fly 0.0095 0.3466 0.8334 0.9007 0.0043 0.0084
black 0.0017 0.1526 0.7047 0.7504 0.0079 0.0141
used_in_cooking 0.0140 0.3850 0.8230 0.9308 0.0103 0.0216
lay_eggs 0.0270 0.8302 0.8303 0.8432 0.0113 0.0133
wheels 0.0164 0.3856 0.7924 0.8432 0.0117 0.0212
juicy 0.0025 0.6378 0.7923 0.7927 0.0339 0.0616

female (control) 0.0667 0.5798 0.6333 0.6949 0.0049 0.0078

Table 9.5: Results of the evidence metrics for four properties in the giga corpus (raw numbers).

The scores of a property are only informative when compared to other properties. To
facilitate the interpretation of the different metrics, I represent the results in terms of distance
to the median score calculated over all properties. Scores above the property-median will thus
receive a positive value and scores below the median a negative value. To make the scores
comparable, I normalize the distance by representing it as the proportion of the median. For
instance, if the median proportion score is 0.3 a property with a raw cosine score of 0.3 will
have a distance of 0. A property with a cosine score of 0.6 will have a distance of 1, a property
with a diversity score of 0.4 will have a distance of 0.33 and a property with a cosine score of
0.1 will receive a distance of -0.66.

The normalized scores can be summed to show a total evidence representation score. I
sum over all measures and calculate the mean. To soften the impact of outliers, I also calculate
a binary overall score, which simply counts how many measures lie above the median.

176



9.3. ANALYSIS 1: PROPERTY-EVIDENCE AND DIAGNOSTIC CLASSIFICATION

prop. coh. dist. str. sum bin
mean max mean max

sweet 9.74 0.21 0.1 0.12 0.17 0.18 1.75 1.00
hot 5.71 -0.28 -0.03 -0.02 1.55 0.83 1.3 0.50
juicy -0.54 0.65 0.06 0 3.3 3.38 1.14 0.67
lay_eggs 4.08 1.15 0.11 0.06 0.43 -0.06 0.96 0.83
yellow 2.61 1.59 0.06 -0 0.91 0.07 0.87 0.83
red -0.89 1.59 0.06 0 2.09 0.73 0.6 0.83
wheels 2.08 0 0.06 0.06 0.48 0.51 0.53 0.83
used_in_cook-
ing

1.63 -0 0.1 0.17 0.31 0.53 0.46 0.83

green -0.67 1.59 0.15 0.08 0.91 0.07 0.36 0.83
made_of_-
wood

-0.04 0.14 0 0.02 0.79 0.73 0.27 0.67

dangerous 2.88 -0.38 -0.03 0.06 -0.57 -0.33 0.27 0.33
wings 1.35 0.02 0.02 0.08 -0.27 -0.41 0.13 0.67
fly 0.78 -0.1 0.12 0.14 -0.46 -0.41 0.01 0.50
cold 0.04 -0.13 -0.11 -0.02 -0.14 -0.2 -0.09 0.17
swim -0.86 1.59 -0.1 -0.15 -0.56 -0.75 -0.14 0.17
blue -0.83 -0.24 -0.05 -0.03 -0.01 -0.1 -0.21 0.00
roll -0.52 -0.46 -0.1 -0.01 -0.34 0.11 -0.22 0.17
black -0.67 -0.6 -0.06 -0.05 0 0 -0.23 0.00
warm -0.2 -0.3 -0.23 -0.06 -0.5 -0.4 -0.28 0.00
round -0.28 -0.68 -0.21 -0.14 -0.4 -0.41 -0.35 0.00
square - - - - - - - 0.00

female (con-
trol)

11.53 0.5 -0.15 -0.12 -0.38 -0.44 1.82 0.33

med. (raw) 0.01 0.39 0.75 0.79 0.01 0.01 - -

Table 9.6: Results of the evidence metrics in the giga corpus (normalized distance scores) for
property-specific evidence.

Both summed scores attribute the same weight to all metrics, which is not necessarily a fair
comparison, as some factors could have a higher impact on the embedding representations than
others. Nevertheless, the summed scores can provide a first indication of property-evidence
representation in the corpus data.

Table 9.6 represents the normalized scores for all properties in the giga corpus. The
final two columns show the summed scores. The properties in the table are ranked by their
overall summed score. According to the summed score, the control property female has
the highest representation of property evidence, while round has the lowest. Despite the
overall strong score of female, it scores below the median for evidence distinctiveness and
strength. When considering the binary overall score (which punishes low performance on
individual measures) it can be observed that sweet scores highest, followed by lay_eggs,
used_in_cooking, wheels, yellow, and green. There is no property-specific evidence for
square.

To facilitate this analysis, I interpret the evidence representation scores as follows: If the
summed score is negative or the binary summed score is below 0.5 (i.e. less than half of the
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measures score below the median), I interpret the property-representation as low. In all other
cases, I count property-representation as high. It should be noted that this cut-off does not
necessarily indicate sufficient evidence for property encoding in the embeddings. Rather, it
was chosen as a transparent threshold. I use this threshold to compare the representations
of different evidence types to the diagnostic classification outcomes. Other methods of
determining ‘high’ and ‘low’ property evidence might result in a better fit in such a comparison.
In this study, however, I do not aim to find a perfect fit. Rather, I aim to present a global
overview of evidence types and their potential impact on embedding representations. Using a
simple and transparent cut-off reduces the risk of ‘cherry-picking’ results. If the diagnostic
classifiers could identify property-specific information, this should arise from the comparison.

To illustrate the comparison of property-evidence, I show the results of the aggregated
scores for all properties and evidence types in Table 9.6 for the giga corpus. The results
show that properties differ considerably with respect to how strongly they are represented by
property-specific evidence in the giga corpus. The scores show that property-representation
in corpus data does not necessarily depend on property categories; for instance, not all color-
properties have low scores (which is expected on the basis of the hypotheses introduced in
Chapter 3). The two shape-properties, however, are indeed hardly represented.

9.3.2 Comparison to Classification Performance

In this section, I compare the different types of linguistic property evidence found in the
corpora to the outcome of the diagnostic classification experiments (presented in Chapter 8). If
the diagnostic classifiers could identify property-specific information in the embeddings, then
the evidence found in corpus data for this property should be particularly well represented.
To measure this, I use evidence proportion, coherence, distinctiveness, and evidence strength
as illustrated in the previous section. Successful diagnostic classification is defined as clearly
having outperformed the control task baseline (see Chapter 8 for details about the control
task).

The analysis presented in this section also acts as a ‘sanity check’ for the evidence
measures; properties with successful diagnostic classification results have to score highly for
at least one of the evidence types. If they do not, the measures to not capture relevant factors
that impact embeddings. It should be noted that a perfect fit (i.e. high evidence representation
for all successfully classified properties) cannot be expected due to the definition of high
evidence representation on the basis of the median scores. The general tendency, however,
should hold.

Aggregated results

Table 9.7 shows the results of the evidence analysis compared to the results of the diagnostic
classification experiments in the giga corpus and Table 9.8 shows the results in wiki. The
tables show the normalized summed and binary scores for the evidence types ‘property-
specific’, ‘non-specific’, and ‘unrelated’ for properties classified successfully (‘True’) and
properties not classified successfully (‘False’). The final column summarizes the evidence
types that score above the threshold (positive summed score, binary score > 0.5). If the

180
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classifiers have indeed picked up property-specific evidence, then the successfully learned
properties should score highly for property-specific evidence. The unsuccessfully classified
properties should not score highly for any evidence type.

Giga corpus The following observations can be made about property evidence in the giga
corpus (Table 9.7): As expected, for four unsuccessfully classified properties, it can indeed
be observed that none of the evidence types are particularly well represented in the corpus
data (warm, black, dangerous, round). In contrast, for all successfully classified properties
except swim, at least one evidence type is represented well. The fact that the overall tendency
holds is an indication that the metrics used to quantify property evidence can, indeed, reflect
how likely information is to be picked up by a diagnostic classifier.

When comparing the strongly represented evidence types of successfully classified prop-
erties to the unsuccessfully classified properties, the following differences can be observed:
Firstly, for unsuccessfully classified properties, only one evidence type is well represented. In
contrast, for six (out of ten) successfully classified properties, more than one evidence type
is well represented. Secondly, for six unsuccessfully classified properties, property-specific
evidence is the only evidence type that is well represented. When considering the successfully
classified properties, it can be observed that property-specific evidence hardly ever appears as
the only well-represented evidence type. In the majority of successfully classified properties,
non-specific evidence (i.e. property-evidence that is not a direct reflection of the property or
logically linked to it) is well represented (eight out of ten). In contrast, non-specific evidence
is only well-represented for two out of twelve unsuccessfully classified properties. These
tendencies indicate that the diagnostic classifiers are more likely to have picked up information
about property instances of thematically related words than hard, property-specific evidence.

The following exceptions to the overall tendencies can be observed: For property swim
none of the evidence types seem to be represented strongly, despite the successful diagnostic
classification result. A possible explanation for this could be that the threshold was set too
strictly or that the aggregated scores do not give enough weight to individual measures. An
inspection of the individual scores for swim showed that property-specific evidence scores
particularly highly (normalized score of 1.59) for coherence. It is possible that highly similar
property-specific evidence words together impacted the representations. Interactions between
words cannot be reflected by the scores that only consider individual words (all scores except
coherence). Individual scores for other evidence types (non-specific and unrelated) also show
high scores. It is thus also possible that a combination of evidence words from different
evidence types together impacted the embeddings and led to successful classification. This
cannot arise from the analysis conducted here.

A a second exception can be observed for the successfully classified property wings. Its
only strongly represented evidence type is property-specific evidence. It is possible that the
property wings is indeed a case in which property-specific evidence is strong enough to be
represented in embeddings. It should also be kept in mind that different types of evidence can
interact. As in the case of swim, it could be the case that the combination of property-specific
evidence words and other evidence words (e.g. instances of the property) together impacted
the embedding representations and were picked up by diagnostic classifiers.
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Wiki corpus When considering the results in the wiki corpus (Table 9.8), similar tendencies
can be observed. However, it should be noted that three (out of twelve) successfully classified
properties do not show any well-represented evidence types (swim, dangerous, yellow). As
in the giga corpus, possible reasons for this could the following: The thresholds based on the
median were not fitted to the results and may simply be too high (e.g. unrelated evidence is
close to the threshold for dangerous). In addition,the embeddings could reflect interactions
between words of different evidence types.

proportion coherence dist-mean dist-max str-mean str-max

prop- mean-diff 0.0121 0.0570 -0.0175 -0.0393 -0.0012 0.0008
specific median-diff 0.0092 0.1438 0.0757 0.0611 -0.0003 -0.0037

std 0.0233 0.2783 0.2538 0.2740 0.0094 0.0175

non- mean-diff 0.1423 0.0546 0.0973 0.1101 0.0027 0.0107
specific median-diff 0.0849 0.0858 0.1286 0.1019 0.0036 0.0120

std 0.2106 0.0707 0.0613 0.0452 0.0037 0.0187

u mean-diff -0.1545 0.0073 0.0443 0.0253 0.0003 -0.0041
median-diff -0.0881 0.0076 0.0710 -0.0105 0.0003 -0.0085
std 0.2249 0.0123 0.0454 0.0941 0.0010 0.0165

(a) giga

proportion coherence dist-mean dist-max str-mean str-max

prop- mean-diff 0.0045 -0.1984 -0.1232 -0.1380 -0.0024 -0.0040
specific median-diff 0.0075 0.0358 0.0592 0.0026 -0.0045 -0.0069

std 0.0265 0.2917 0.3412 0.3665 0.0097 0.0120

non- mean-diff 0.0817 0.0411 0.0899 0.0917 0.0015 0.0050
specific median-diff 0.0915 0.0417 0.1058 0.1007 0.0013 0.0006

std 0.1429 0.0539 0.0679 0.0687 0.0040 0.0146

u mean-diff -0.0863 0.0125 0.0430 0.0425 0.0011 -0.0091
median-diff -0.1083 0.0120 0.0421 0.0442 0.0005 -0.0109
std 0.1529 0.0221 0.0590 0.0717 0.0020 0.0058

(b) wiki

Table 9.9: Differences between the mean and median scores of successfully classified prop-
erties and unsuccessfully classified properties for specific measures in the giga and wiki
corpus.

9.3.3 Results per measure

What is clearly visible from both corpora is that property-specific evidence by itself does
not seem to provide a strong signal to diagnostic classifiers. For most successfully classified
properties, multiple types of property-evidence scored highly. In most cases, the highly
scoring evidence types involve non-specific evidence (i.e. property instances and words
related to the property or its instances).
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The analysis presented so far is based on normalized measure scores and somewhat
arbitrary thresholds. To test whether the tendencies observed so far are also reflected by the
absolute scores, I compare the mean scores of successfully and unsuccessfully classified prop-
erties for different evidence types. If an evidence type impacts the outcome of the diagnostic
classification results, it should show high scores for successfully classified properties and
low scores for unsuccessfully classified properties. The differences between the scores are
presented in Table 9.9 for both corpora. I opt against conducting significance tests on the
rather small data. Instead, I show the differences between the mean and median scores.

Giga corpus The following observations can be made for property evidence in the giga
corpus (Table 9.9a): Overall, the initially observed trend seems to hold: For non-specific
evidence, successfully classified properties score higher than unsuccessfully classified proper-
ties across all measures. When considering the measures in detail, it can be observed that
property-specific evidence does show the highest differences for coherence (i.e. property-
specific evidence words tend to be more coherent than non-specific or unrelated words). This
is to be expected, as the group of property-specific evidence words is usually small and closely
tied to the property itself, whereas non-specific evidence words can belong to a variety of
semantic categories. For all other scores, non-specific evidence clearly shows the highest
differences.

Wiki corpus The same general trend can also be observed in the wiki corpus (Table 9.9b);
non-specific evidence shows the highest differences between successfully and unsuccessfully
classified properties. In contrast to giga, non-specific evidence words also scores highest
for coherence. This is surprising, as non-specific evidence is not necessarily semantically
coherent.

9.3.4 Discussion

From the analysis conducted in this section, it is not possible to determine whether there is a
causal relationship between this type of evidence and successful classification. A possible
way of establishing whether there is indeed a causal relationship could be corpus evidence
manipulation. At this point, it can be concluded that the evidence the classifiers are most likely
to pick up is non-specific evidence consisting of property instances (e.g. red: blood, paint,
car) and words related to the property (e.g. fly: pilot, airport, crew) through thematic relations
or social biases. This tendency is in line with the observations made in the error analysis
of the diagnostic experiments; the results indicated that classifiers may pick up evidence of
fine-grained semantic categories, rather than specific properties. Such categories are likely to
be reflected well through hyponyms and hypernyms, which are part of non-specific property
evidence.

9.4 Analysis 2: Hypotheses about Property-Specific Evidence

In this section, I analyze the expression of properties with respect to the factors that may
impact whether properties are expressed: Property-concept relations, property types, and
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factor relation example expressed

impliedness implied_category mammal - cat no

variability and
specification

variability_limited yellow - bell pepper yes
variability_open red - car no

typicality
typical_of_property red - blood yes
typical_of_property green - broccoli no

affordedness
afforded_usual fly - seagull yes
afforded_unusual swim - cat no
affording_activity round - bowling ball yes

Table 9.10: Overview of property-concept relations and hypotheses about whether property
information is likely to be expressed in corpora.

.

genre. Property-concept relations form the central component of the theoretical model
introduced in Chapter 3. The central hypothesis of this model is that whether a property is
expressed in texts depends on the relation that holds between the property and a particular
concept. For example, the model predicts that properties that are part of the highly implied
knowledge about a concept are unlikely to be expressed (e.g. mammal: cat). This relationship
between property and concept is expressed by the relation implied_category. Variable
properties, in contrast, are expected to be expressed (e.g. red: apple). The property-concept
relations and hypotheses are summarized in Table 9.10 and explained in detail in Chapter 3.
In this section, I use the measures defined in Section 9.2.4 to test these hypotheses on the
basis of the same extracted and annotated context words used in the previous analysis. For
this analysis, I compare the expression of property-specific evidence words between property-
concept relations. I only focus on property-specific evidence words, as this type of property
evidence is the only ‘hard’ evidence that specifically points to a property, rather than a
semantic category.

In addition to property-concept relations, other factors may also impact what type of
information is expressed in corpora. Previous research has argued that whether property
information is expressed in corpus data depends on the type of property. For instance, it has
been shown that visual information (e.g. about colors and shapes) is less well represented in
context-free distributional models (e.g. Rubinstein et al., 2015) (refer to Chapter 1 for more
details). In addition to property types, it can be expected that the genre of a corpus impacts
what type of conceptual information it will emphasize. For example, encyclopedic texts can
be expected to place more emphasis on making conceptual knowledge explicit, while news
texts can be expected to focus on events. I also test these expectations using the context words
annotated as property-specific evidence.

For this analysis, I only use measures that consider the degree to which evidence words
are being expressed. Whether they have an impact on the embedding representations is not
the focus of this analysis. Thus, I only consider the following measures:

• the proportion of property-specific evidence among the candidates
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• the strength of property-specific evidence

The remainder of this Section is structured as follows: Section 9.4.1 presents an analysis
of property-specific evidence for property-concept relations. This is followed by an analysis of
specific properties (Section 9.4.2) and genre (Section 9.4.3) with respect to property-specific
evidence. The discussion of the results will be taken up in a general discussion at the end of
the chapter (Section 9.5).

9.4.1 Property-Concept Relations

The model of property-evidence expression proposed in Chapter 3 is based on linguistic factors
depending on relations that hold between properties and concepts. According to this model,
whether property evidence is likely to be expressed depends on how the relation between
the property and a specific concept. A summary of the factors and the resulting property
concept relations is shown in Table 9.10 (for a detailed explanation, refer to Chapter 3).
Before presenting the results for specific hypotheses derived from the model, I outline how
property-concept pairs were assigned to specific relations and how property-evidence was
analyzed on the level of individual relations.

Relation Assignment

The analysis of individual relations is complicated by the fact that multiple relations can be
assigned to a single property-concept pair. As shown in Chapter 7, the annotations in the
diagnostic dataset resulted in complex interactions of relations for individual property-concept
pairs. Therefore, I use a general comparison and two strategies to assign property-concept
pairs to relations.

General Comparison At its core, the theoretical framework predicts the following: Cor-
pora should contain property-evidence for a property-concept pair if it has been annotated
with any of the relations expected to trigger property evidence. For all other property-concept
pairs, corpora should contain less or no evidence. For instance, the pair red-cherry is anno-
tated with the following relations: typical_of_concept, typical_of_property,
implied_category, variability_limited. Typical_of_concept and im-
plied_category are not expected to trigger evidence, but typical_of_property
and variability_limited are. Therefore, it can be expected that the contexts of the
word cherry contain evidence of the property red. In contrast, the pair red-couch is annotated
with the relation variability_open. The relation is not expected to trigger evidence.
Hence, it can be expected the contexts of the word couch contain less evidence of the property
red. This type of comparison does not require assigning specific relations. Instead, pairs
are simply assigned to one of two possible expectations. This has the disadvantage that the
analysis does not provide insights about specific relations.

Strict Relation Assignment To provide a controlled analysis of relations, I apply a strict
approach to the selection of pairs for a specific relation: In this approach, I only select pairs for
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which the relation under consideration is the only relation that describes the property-concept
pair. This has the advantage of eliminating possible interactions. It has the disadvantage that
such cases comparatively infrequent in the dataset. For example, the relation implied_-
category only appears in 16 pairs as the only relation assigned to a pair. Insights based on
the ‘strict’ relation assignment method thus tend to be based on limited data.

Loose relation assignment To exploit a larger set of examples per relation, I use a second
strategy for assigning property-concept pairs to specific relations. This second strategy uses
looser requirements than the strict assignment method. For relations expected to trigger
property-evidence, I select all pairs for which the relation under consideration is the only
relation expected to trigger property-evidence. For example, the pair red-brick is annotated
with the following relations: typical_of_concept, variability_limited, and
variability_open. The only relation expected to trigger property evidence is vari-
ability_limited. Hence, applying loose relation assignment, the pair red-brick is
assigned to the relation variability_limited. Pairs in which multiple relations can
trigger property evidence (e.g. the example of red-cherry above) are excluded from the
analysis.

What is more challenging is the selection of pairs for relations not expected to trigger
property-evidence. A single pair can be annotated with multiple relations that are not
expected to trigger property evidence. For example, the pair blue-paint is annotated with
variability_open and typical_of_concept. Neither of the two relations are
expected to trigger property evidence. To assign the pair to a specific relation, I chose
the relation that received the highest number of votes in the annotation task (in this case
variability_open). Pairs for which multiple relations have the same number of votes
are excluded. This ‘loose’ approach has the disadvantage that possible interactions between
relations not captured by the initial framework may distort the results.

Evidence Analysis on the Level of Relations

The hypotheses derived from the model of conceptual knowledge and property expression
rely on the comparison of property evidence between specific property-concept relations.
To test these hypotheses, I aggregate property-evidence on the level of property-concept
relations (evidence proportion and evidence strength). I aggregate both scores by calculating
the median score over all pairs assigned to a relation. I opt for the median instead of the mean
because it is less strongly influenced by outliers (in particular, when dealing with few data
points). In the remainder of this section, I present the results of the analysis per hypothesis.
For each hypothesis, the most important assumptions are summarized briefly. A detailed
overview of all hypotheses derived from the model of property evidence can be found in
Chapter 3.

General comparison As discussed in the previous section, assigning property-concept
pairs to specific relations is difficult, as individual pairs have been annotated with multiple
relations. However, it is possible to test the following, general hypothesis without assigning
pairs to relations: Pairs annotated with any of the relations expected to trigger property
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prop. str-median str-max n

evidence_pos 0.0075 0.0074 0.0155 798
no_evidence_pos 0.0043 0.0039 0.0087 470

Table 9.11: Evidence representation on the level of relations in the giga corpus using a general
comparison.

prop. str-median str-max n

evidence_pos 0.0057 0.0063 0.0140 894
no_evidence_pos 0.0026 0.0042 0.0089 502

Table 9.12: Evidence representation on the level of relations in the wiki corpus using a general
comparison.

evidence should have more property evidence in the corpora than the pairs not annotated with
relations expected to trigger property evidence. The results of this comparison are shown in
Table 9.11 for the giga corpus and in Table 9.12 for the wiki corpus. The tables show the
results of evidence proportion and evidence strength for property-concept pairs expected to
trigger evidence (‘evidence_pos’) compared to property-concept pairs also annotated with
positive relations, but not expected to trigger evidence (‘no_evidence_pos’). The scores reflect
evidence proportion (median) and evidence strength (maximum and median). In addition,
the number of property concept pairs for each condition is shown (‘n’). It can be observed
that the expected tendencies hold in both corpora; pairs expected to trigger evidence score
higher for all three measures in both corpora. This can be seen as a first indication that the
general hypothesis holds. However, this analysis cannot provide insights about individual
property-concept relations.

Results for specific relations The results of the analysis of property-concept relations are
presented in Table 9.13 for giga and Table 9.14 for wiki. The tables show the scores for
evidence proportion (median) and evidence strength (max and median) in the strict and loose
relation assignment condition. In addition, the number of property concept pairs for each
condition is shown (‘n’). Tendencies that hold consistently should be reflected by all scores
and hold in both conditions. A summary of the comparisons is shown in Table 9.15. I discuss
the results for each hypothesis in the remainder of this section.

Variability and specification One factor that is expected to lead to expressions of property-
specific information is variability among a limited range of properties. For instance, apples
tend to be either red, green, or yellow. In such cases, the knowledge about the particular
property is not strongly implied. Rather, it could function as a distinguishing feature when,
for instance, identifying a particular instance of an apple. It is expected that the relation
variability_limited triggers more property evidence than the relation implied_-
category. This tendency is confirmed in both corpora in the strict relation assignment
condition and partially confirmed in both corpora in the loose relation assignment condition.
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group hypothesis giga wiki
strict loose strict loose

impliedness

implied_category <typical_of_property n.a. ✓ n.a. ✓

implied_category <afforded_usual ✓ ✗ ✗ ✗

implied_category <affording_activity ✓ ✓ ✓ ✓

implied_category <variability_limited ✓ ✓* ✓ ✓*
implied_category <typical_of_concept ✓ ✓* ✓ ✓

implied_category <afforded_unusual ✗ ✗ ✗ ✗

implied_category <variability_open ✓ ✓* ✗ ✗

property-illustration typical_of_property >typical_of_concept n.a. ✗ n.a. ✗

affordedness
affording_activity >afforded_unusual ✓ ✓ ✓ ✓

afforded_usual >afforded_unusual ✓ ✓ ✗ ✗

variability variability_limited >variability_open ✓* ✓* ✓ ✓

Table 9.15: Summary of hypotheses. ✓indicates that a tendency holds; ✗indicates that a
tendency does not hold. * indicates that a tendency is reflected by the majority of scores but
not by all scores.

A second hypothesis about variability is related to the range of possible options. While
apples tend to have one out of a limited range of colors, t-shirts or cars can have any color.
The range of options is virtually unlimited (variability_open). While this type of
variability is also expected to trigger explicit property mentions, they are most likely less
systematic than for variability_limited. In other words, it is more likely that corpora
contain information about the fact that apples can be red than about the fact that t-shirts can be
red. This hypothesis is confirmed in the giga and partially in the wiki corpus in both relation
assignment conditions.

Finally, it can be expected that variability_open, albeit expected to trigger less
consistend evidence than variability_limited, still leads to more explicit property
mentions than implied_category. This expectation is partially confirmed in giga in the
strict (but not the loose) condition. It is not confirmed in wiki.

Property-illustration and typicality The relation-framework contains two different re-
lations that express slightly different notions of typicality: Properties can be particularly
closely associated with concepts. In other words, some properties are typical of a concept
and immediately come to mind when thinking of a concept (e.g. green and broccoli). Such
an association is referred to as typical_of_concept. Typicality can also create asso-
ciations from property to concept: Some concepts are typical examples of a property. Such
concepts tend to illustrate the property particularly well (e.g. blood is closely associated
with the color red and can be used to illustrate it). This notion is captured by the relation
typical_of_property. It should be kept in mind that the crowd had difficulties with
distinguishing the two relations. It is thus possible that the annotations do not accurately
reflect the two notions. The annotations accurately reflect close associations, but they do not
reflect the fine-grained difference between the two relations.

The association captured by the relation typical_of_concept is not expected to
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trigger systematic evidence. The notion captured by the relation typical_of_property
is expected to trigger systematic evidence. Whereas typical_of_concept can occur
without its counter-part, this is highly unlikely for typical_of_property. Therefore,
the strict selection mode does not allow for testing the hypothesis. In the loose mode, it
could not be confirmed in either of the corpora. The relation typical_of_property is
expected to trigger more evidence than implied_category. This expectation could be
confirmed in both corpora in the loose condition. Typical_of_concept also triggered
more evidence in both corpora. These results could indicate that close associations lead
to more property expressions than high impliedness. It is, however, not possible to draw
conclusions about the fine-grained differences between the two typicality relations as the
annotations are not reliable.

Affordedness Properties that express possible and usually performed activities (affor-
ded_usual: fly: seagull) or enable such activities (affording_activity: round-
bowling ball) are expected to trigger systematic property evidence. Properties expressing
possible but not usually performed activities are not expected to trigger systematic evidence
(e.g. swim-cat). It should be noted that the crowd judgments for afforded_unusual
showed a comparatively high number of unreliable judgments. Therefore, the comparisons
involving the relation afforded_unusual could be distorted.

Based on the reliable data, the following observations can be made: Properties that afford
activities clearly yield more evidence than highly implied information in both corpora and in
both conditions. The relation afforded_usual, however, only triggers more evidence in
the giga corpus under the strict condition. This is not confirmed in the wiki corpus.

Based on the imperfect data, the following observations can be made: In wiki, only
affording_activity shows more evidence than afforded_unusual (in both con-
ditions). Afforded_usual triggers more evidence than afforded_unusual in the
giga corpus (in both conditions), but not in wiki. Afforded_unusual does not trigger
more evidence than highly implied information.

Summary The analysis of specific property-concept relations yielded the following insights:
Overall, relations expected to trigger property evidence do indeed seem to do so in an overall
comparison. When considering individual hypotheses, the following tendencies could be
observed: Firstly, the results indicate that variability, in particular variability among a limited
range of property-options triggers systematic property-evidence. Secondly, properties that
afford activities also seem to be mentioned explicitly. Thirdly, close associations between
properties and concepts seem to trigger property-evidence. Unfortunately, however, it is not
possible to distinguish the two directions of typicality involved in such close associations.
Other hypotheses, however, could not be confirmed. Partially, this could be due to unreliable
annotations (in particular for the afforded_unusual).

9.4.2 Properties

Previous work on semantic properties in distributional representations has shown that certain
properties tend to be present in distributional representations while others tend to be absent.
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Rubinstein et al. (2015) showed that perceptual information tends to be absent, while taxo-
nomic information tends to be represented well. The experiments presented in the previous
chapter (Chapter 8) are in line with this observation. However, the experiments have also cast
doubt on whether the properties themselves are represented. A likely alternative explanation
is that distributional representations carry information about fine-grained semantic categories
that happen to correlate with semantic properties. The analysis presented in Section 9.3
has shown that diagnostic classifiers are indeed more likely to have picked up information
about fine-grained semantic categories than about specific properties. This could also explain
observations made in previous research. In this section, I examine to what degree the corpora
contain property-specific evidence for particular properties.

For this analysis, I examine property-specific evidence in terms of evidence proportion and
evidence strength (summarized in Table 9.16). The proportion of evidence words shows how
many of the extracted evidence candidates could be identified as property-specific evidence.
The evidence strength is expressed by the raw cfiwf scores (mean and maximum). A high
evidence proportion indicates that the context comparison did indeed yield relevant evidence
candidates. Evidence strength provides an indication of frequency for positive examples
compared to negative examples. Properties that are represented well should score highly
for all measures. In addition, I show the absolute number of words expressing the property
(‘abs.’). The top three scores per measure are shown in bold font.

The scores for individual properties partly confirm the initial expectation. Most color and
shape properties score lower than other properties (in particular the part properties and the
complex properties), and the taxonomic property lay_eggs (in giga)). However, this pattern
is not consistent; the color property red has one of the top scores for evidence strength, the
color property yellow is also represented comparatively strongly in the giga corpus, and the
taxonomic property lay_eggs is not represented at all in the wiki corpus. Other perceptual
properties are also represented comparatively well (e.g. hot and both taste properties in both
corpora). Overall, it is difficult to identify clear patterns for specific types of properties.
Whether property-specific evidence is expressed in corpus data does not seem to depend on
the property type alone.

It is possible that the property-concept relations present a better explanation of whether
property-specific evidence is expressed in corpora. For example, it is likely that the property-
concept relation variability_limited triggered many of the explicit property men-
tions for the property red. Likewise, it is likely that the property sweet is relevant for activities
and functions. At this point, however, it is difficult to determine whether the differences
observed between different property-concept relations are indeed more meaningful than the
differences observed between the property types.

9.4.3 Genres

In this section, I consider differences between the two genres represented by giga and wiki
based on the analyses presented above. Chapter 3 outlined hypothesized differences between
the two genres: Implied information is expected to be represented more strongly in the
encyclopedic texts in the wiki corpus than in the news texts in the giga corpus. Information
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relating to actions (i.e. afforded activities or functions and affording properties) are expected
to be represented more strongly in news texts.

Table 9.17 shows a comparison of the impliedness and affordance relation in the two
corpora. For impliedness, mixed results can be observed: In the strict condition, the evidence
is indeed represented more strongly in the wiki corpus (while the proportions of evidence
are similarly high). In the loose condition, evidence is represented almost equally strongly in
both corpora (with a higher proportion in giga).

With respect to affordances, the following observations can be made: As expected, the
giga corpus clearly shows a higher representation of evidence for the relation afforded
_usual across both conditions. For affording_activity, however, wiki seems to
contain stronger evidence representation. It could be the case that the encyclopedic texts place
strong emphasis on properties that afford activities, leading to higher evidence representation
in the wiki corpus. For unusual actions, no clear differences can be observed.

In addition, the following differences between the corpora can be observed on the level of
particular properties (based on Table 9.16 discussed in the previous section): The property
dangerous is expressed by 23 different words in giga, compared to 6 different words in wiki.
A possible explanation for this could be the emphasis of news texts on different types of
adverse events (e.g. crime, natural disasters, accidents). Other properties that show striking
differences across the two corpora are yellow and lay_eggs. Both properties are strongly
represented in giga, but not in wiki. It is possible that the encyclopedic corpus only mentions
the highly taxonomic property lay_eggs for specific categories (i.e. the category of BIRD) and
uses inheritance for all concepts included in the categories. This would mean that lay_eggs
is not made explicit for, for instance, specific birds (e.g. seagull, robin). This observation is
another indication that taxonomic property information is most likely encoded via evidence
that points to fine-grained semantic categories, rather than property-specific information.

9.5 Discussion and Conclusions

In this chapter, I have used the diagnostic dataset to analyze the expression of properties in
two corpora underlying two context-free distributional models. The same models have been
examined through diagnostic methods (Chapter 8). The purpose of this chapter was twofold:
Firstly, the chapter aimed to verify the results obtained from diagnostic classification using
corpus analysis. Secondly, the chapter aimed to give deeper insights about the factors that
lead to the expression of property-specific evidence in corpus data.

The results of the diagnostic experiments indicated that the diagnostic classifiers may
identify fine-grained semantic categories rather than property specific evidence in the embed-
ding representations. The goal of the first analysis (Section 9.3) was to investigate what type
of property-evidence is likely to be identified by diagnostic classifiers.

To find context words in a corpus that are particularly characteristic of a concept, I
exploited the contrastive nature of the diagnostic dataset. I compared the contexts of positive
examples of a property (e.g. fly: seagull, airplane) to its negative examples (e.g. penguin,
bus) and extracted contexts that are characteristic of the positive examples. This contrastive
approach resulted in context words which are likely to (1) have been picked up by diagnostic
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classifiers and (2) express property evidence. For instance, the top-ranked words retrieved for
the control property female include the expressions herself, actress, and birth.

To gain insights about what type of property-evidence is strongly represented in corpus
data, I annotated the extracted context words in terms of different evidence types (e.g. property-
specific evidence, property-instances, thematically related words). I quantified the degree to
which different evidence types are represented in corpus data and compared the results to
the outcomes of the diagnostic experiments (found in Chapter 8). The results indicated that
diagnostic classifiers are more likely to have picked up non-specific evidence (e.g. things that
are sweet) than property-specific evidence (e.g. words expressing the property sweet). This
observation provides additional evidence for the tendency observed in the error analysis of the
diagnostic classification results: Distributional data are more likely to represent fine-grained
semantic categories than property-specific information. The analysis demonstrated the use of
corpus analysis as a means of verifying results obtained from diagnostic experiments.

The comparison between corpus evidence and the results of the diagnostic experiment has
an important limitation: The analysis presented in this chapter cannot provide insights into
how context-free distributional models (and diagnostic classifiers) react to different types and
distributions of property evidence. Ultimately, the analysis cannot indicate with certainty that
the models have indeed picked up one type of property-evidence and not another. A possible
way of addressing this limitation is to simulate different types of evidence using artificial or
manipulated corpus data. The behavior of models trained on differently distributed corpus
data could give further insights.

A second purpose of this chapter was to test the hypotheses derived from the model of
conceptual knowledge and property evidence presented in Chapter 3. The analysis showed
a few tendencies in line with the hypotheses derived from the model: Overall, it seems
that property-concept relations that are expected to lead to explicit property evidence do
indeed show a stronger representation of property evidence in the corpora. Furthermore, it
seems that property-information that affords activities leads to more property expressions
than information that is highly implied. Information that is variable also seems to trigger
more explicit expressions of property evidence compared to implied information. The latter
observation is also in line with contemporary research on contextualized language models
and corpus data; as mentioned in Chapter 1, Paik et al. (2021) observe similar tendencies in
their exploration of the reporting bias.

Several hypotheses could not be confirmed, in particular in cases for which the annotations
of the dataset are not reliable. The crowd annotators could not distinguish close associations
from concept to a property (typical_of_concept) from close associations from property
to concept (typical_of_property). The corpus data indicate that close associations
do seem to lead to stronger property expressions. However, at this point, it is not possible
to determine whether the type of close association plays a role. All results for individual
relations are limited to some degree, as they either rely on few data points or run risk of being
distorted by complex interaction between relations (see Chapter 7 for details).

In addition to property-concept relations, I also compared property-specific evidence
between different properties. Previous research found that perceptual properties tend to be
absent from distributional data, while other properties and, in particular, taxonomic properties,
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are expressed in distributional data. The analysis of property-specific evidence showed that
this pattern holds for some properties, but is by no means consistent. For example, the
taxonomic property lay_eggs is not mentioned at all in the wiki corpus. Other properties show
mixed results. This finding is an additional indication that taxonomic information is encoded
via fine-grained semantic category information rather than specific properties. Furthermore, it
may be an additional indication that the type of a property does not necessarily determine
whether it tends to be expressed in corpora or not.

9.6 Summary

This chapter presented an analysis of property evidence in two corpora. The analysis relied
on the contrastive nature of the diagnostic dataset. I extracted candidates of property evidence
from contexts of positive examples of a property and annotated them in terms of different
types of property evidence (Section 9.2). On the basis of these annotations, I conducted two
analyses: Firstly, I compared the property evidence identified in the corpora to the results
of the diagnostic experiments presented in Chapter 8 (Section 9.3). The results indicated
that diagnostic classifiers are more likely to have picked up fine-grained semantic categories
than property-specific information. Secondly, I tested the hypotheses derived from the model
of conceptual knowledge (Chapter 3) against the extracted property evidence. The results
showed some initial tendencies, but are based on few examples and potentially limited by
complex interactions in the data.
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10. Challenging Contextualized Language
Models

10.1 Introduction

In this chapter, I present an approach towards exploring the semantic knowledge captured
by contextualized language models. Rather than using diagnostic classification on vector
representations of isolated words, I opt for analyzing the behavior of the models in two
challenge tasks. Firstly, I analyze the behavior of pre-trained models using cloze-tasks. Cloze-
tasks test the knowledge captured by pre-trained language models by letting them predict
a masked token in a sentence. Secondly, I analyze the behavior of models that have been
fine-tuned on a Winograd task (using the Winogrande dataset introduced by Sakaguchi et al.
(2020))). This task involves complex semantic reasoning. Models fine-tuned on it should be
able to reason over semantic properties in Winograd sentences. I present a Winograd-style
challenge based on the semantic properties and concepts in the diagnostic dataset (introduced
in Part III) and show how it can be used to examine the abilities of fine-tuned models.

If property-knowledge is expressed systematically in corpora, contextualized language
models should capture this. A first approach towards testing this is to examine whether
pre-trained language models assign different probabilities to positive and negative examples
of a property given a context that evokes the property. Consider the following sentence
(Example 10.1):

(18) The [mask] is yellow.

The sentence evokes the semantic property yellow by means of the word yellow. A
bidirectional language models, such as Bert (Devlin et al., 2019), can use this information to
predict candidate tokens for the masked token ([mask]). The model will assign a different
probability to each word (or subword) in its repertoire. Thus, it is possible to compare
probabilities of different candidates for filling the masked slot (Example 19):

(19) a. The lemon is yellow.

b. The sea is yellow.

The task can also be turned around to examine the probabilities assigned to a specific
property given the whether a model can predict the property given a concept (Example 20):

(20) a. The lemon is [mask].

b. The sea is [mask].

A pre-trained language model that has captured information about that fact that lemons
tend to be yellow should assign a higher probability to lemon than to sea in Example 19.
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Likewise, it should assign a higher probability to yellow in the first sentence of Example 20
than in the second sentence. Analyzing the probability assigned to an individual word is not
meaningful, as it is unclear what an individual score would mean. However, the positive
and negative examples in the diagnostic dataset allow for a comparative analysis: Overall,
positive examples should have a higher probability in a property-evoking context than negative
examples. I use this approach to gain first insights into the semantic properties captured by
pre-trained contextualized models (Section 10.3). The results indicate that pre-trained Bert
models can indeed reflect this difference for a number of properties. For Roberta, only few
properties yield the expected probability difference.

Pre-trained language models have not been trained on a specific semantic task. Rather,
they have simply learned to predict masked tokens (or next sentences). The success of
contextualized language models is rooted in their high performance when fine-tuned on a
task-specific training set for a specific task. It can be argued that the fine-tuning process
‘foregrounds’ different aspects of linguistic knowledge that are relevant for a particular task.
Thus, another way of assessing the conceptual knowledge captured by contextualized language
models is to test whether the models can learn to reason over semantic phenomena when
fine-tuned on a task that requires knowledge of and reasoning over semantic properties.

The Winograd Schema Challenge (WSC) (Levesque et al., 2012) has been designed to
assess common sense knowledge and reasoning abilities. The task poses pronoun-resolution
problems that can, at least in theory, only be solved by means of reasoning over aspects of
common sense knowledge. Consider Example 21:

(21) The trophy doesn’t fit into the brown suitcase because it is too large.

The task is to choose the correct co-referent of the pronoun it from the two candidate noun
phrases trophy and suitcase. If a model knows that suitcases tend to be used as containers, it
should be able to leverage this knowledge and correctly assign it to trophy. The task has been
re-designed to be suitable for a multiple-choice set-up commonly used for language models
by replacing the pronoun with a gap. The language model can then be fine-tuned on a binary
classification task in which it learns to distinguish correct from incorrect solutions for filling
the gap (Example 22):

(22) The trophy doesn’t fit into the brown suitcase because the __ is too large.

a. The trophy doesn’t fit into the brown suitcase because the trophy is too large.
(correct)

b. The trophy doesn’t fit into the brown suitcase because the suitcase is too large.
(incorrect)

The fine-tuning process should foreground the relevant information for reasoning over
common sense problems if it is indeed captured by the language model. Existing Winograd
datasets, however, do not allow for a targeted analysis of different aspects of semantic
knowledge. Therefore, I present a study that uses the diagnostic dataset in a Winograd-style
challenge. This is done by means of a template-based approach in which positive and negative
examples of a property are used as co-reference candidates (Example 23):
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(23) John prefers the seagull over the penguin because the __ can fly.

The template-based approach means that the sentences seen by the model are possibly
unconventional and may sound unnatural. However, a language model that has sufficient
knowledge should not be distracted by this. The artificial nature of the task has the advantage
that we have control over what is expressed in the sentences.

Having control over the Winograd sentences is particularly relevant, since recent research
has shown that high performance on the Winograd Schema Challenge (WSC) as well as other
semantic tasks may be the result of spurious correlations in the data, rather than the models’
ability to reason over the target information (e.g. Elazar et al., 2021; Abdou et al., 2020;
Poliak et al., 2018). As a response to this criticism, Sakaguchi et al. (2020) have proposed
a WSC-style dataset (called Winogrande) in which they attempted to remove such spurious
correlations by identifying and discarding instances with obvious lexical associations. State of
the art models performed less highly on this dataset, indicating that (1) the dataset may indeed
be less biased and (2) that the common-sense reasoning abilities of state of the art models
are not as impressive as they seemed. To explore what type of knowledge language models
trained on the Winogrande training set capture, I present an evaluation of the fine-tuned
models using a Winograd-style challenge set constructed around the properties and concepts
in the diagnostic dataset. This evaluation set has been created by means of a template-based
approach. One advantage of this template-based approach is that it allows for systematic
exploration of what the models trained on the Winogrande set capture (Section 10.4).

The results of the Winograd-style property challenge indicates that the fine-trained models
under investigation perform barely above a random, chance-based baseline across most
properties. To determine whether the models rely on superficial features rather than property
knowledge, systematic variation in the templates used for generating the challenge were
exploited. The results of this analysis show indications that the models fall back on using
marked and unmarked discourse structures for their decisions rather than reasoning over
properties. These results in combination with the initial insights based on the cloze tasks lead
to the following conclusions: If property knowledge in encoded in the models, its signal is
most likely too weak to override unconventional discourse structure in the sentences.

This chapter is structured as follows: I first give present the diagnostic dataset and explain
how it can be used to challenge contextualized models (Section 10.2). Section 10.3 presents
the results of the cloze task for pre-trained contextualized models and Section 10.4 the
results of the Winograd-style challenge for fine-tuned models. The results of both studies are
discussed in Section 10.5.

10.2 Diagnostic data

Both tasks use semantic property dataset introduced in Part III of this thesis. Originally, it was
designed to ‘diagnose’ semantic property knowledge in context free embeddings by means of
a probing task in which a classifier has to distinguish positive from negative examples of a
property. The positive and negative examples have high semantic similarities due to shared
taxonomic categories and can thus be expected to have similar embedding representations.
They are, however, still distinguishable by the semantic property in question (e.g. seagull
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Category Property n pos n neg

complex
dangerous 77 60
used_in_cooking 100 45

function/ action
fly 65 104
roll 55 42
swim 101 47

part
wheels 78 27
wings 82 84

taxonomic lay_eggs 75 70

perceptual (temperature)
cold 70 24
hot 103 43
warm 133 36

perceptual (color)

black 90 53
blue 60 110
green 94 69
red 92 69
yellow 43 88

perceptual (material) made_of_wood 100 45

perceptual (color)
round 103 20
square 90 22

perceptual (taste)
juicy 92 64
sweet 99 64

gender (control) female 152 208

Table 10.1: Overview of the property types and label distribution in the diagnostic dataset.

and penguin can be distinguished by fly). Thus, the dataset allows for a systematic analysis
of semantic properties and avoids obvious lexical associations. An overview of properties
and the number of positive and negative examples per property is shown in Table 10.1.
As in the diagnostic experiments presented in Chapter 8, the property female is used as a
control condition. Information about gender can be expected to be encoded systematically. If
the models cannot perform well on the control property, this may be an indication that the
interpretability method used is not able to detect semantic property information.

10.3 Study 1: Two Cloze-Task Challenges

The first study presented in this chapter examines the information captured by bi-directional
contextualized language models on the basis of pre-training. Pre-training refers to the process
of creating a language model by means of masked token prediction and, in the case of Bert,
next sentence prediction (for a more detailed explanation, refer to the core concepts explained
in Section 1.2.2 of Chapter 1). It is important to note that pre-trained language models have
only been trained on predicting tokens (and sentences) given a particular context. Their
pre-training does not include specific tasks that highlight semantic property information.

202



10.3. STUDY 1: TWO CLOZE-TASK CHALLENGES

Nevertheless, if contexts do indeed reflect property-information, a simple cloze-task should at
least show initial indications that this is the case.

The experiments presented in this section rely on comparing token probabilities given a
particular sentence (e.g. The lemon is [mask]. v.s. The sea is [mask].). It should be noted that
such experiments require a number of methodological choices that have implications for the
conclusions drawn from them. The experiments presented here constitute an initial approach
and should be seen as a first step, rather than an exhaustive analysis.

10.3.1 Method and data

In this section, I introduce two variants of a cloze-task: concept prediction given the property
(Example 24a) and property prediction given the concept (Example 24b).

(24) a. The [mask] is yellow.

b. The lemon is [mask].

Firstly, I present the template sentences used for both variants. Secondly, I outline the
extraction of token probabilities. Thirdly, I introduce a random baseline against which
probability differences can be interpreted.

Templates

Concept prediction To compare probabilities predicted by the language models, I embed
the positive and negative examples in the diagnostic dataset in sentences that evoke the
property using templates. The sentences in Example 25 illustrate this idea:

(25) a. The [mask] flew.

b. The seagull flew.

c. The penguin flew.

To provide conditions that are equivalent to the masked language modeling scenario, I
use the sentence-separation tokens used when pre-training the language models. Thus, for
Bert, the template then becomes: [CLS] The [mask] can fly [SEP].

When creating templates for both variants of the challenge, the following aspects should
be considered: Properties differ with respect to how they relate to concepts (e.g. color
attributes v.s. parts). To create templates that are close to natural language, I embed properties
and concepts in slightly different templates by choosing different predicates for different
property-types, as shown below:

perceptual : [CLS] The [MASK] is yellow. [SEP]

perceptual (material) : [CLS] The [MASK] is made of wood. [SEP]

complex : [CLS] The [MASK] is dangerous. [SEP]

complex (used_in_cooking) : [CLS] I used the [MASK] to cook something. [SEP]
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part : [CLS] The [MASK] has wings. [SEP]

taxonomic : [CLS] The [MASK] lays eggs. [SEP]

action : [CLS] The [MASK] flew. [SEP]

gender (control) : [CLS] The [MASK] showed herself. [SEP]

The templates shown above target mentions of concepts that refer to specific instances
(e.g. the lemon) rather than general statements (e.g. all lemons). This approach is in line
with the hypotheses about property-mentions in corpora presented in Chapter 3. In general,
template-based approaches offer a variety of choices. For instance, it could be considered to
elicit subtle information about quantifier relations (ALL v.s. SOME) between properties and
concepts. It is, however, highly questionable whether such templates could elicit probability
differences, as it has been shown that cloze templates involving negation hardly lead to
correct predictions (Ettinger, 2020). In this exploratory approach, I use the simple templates
presented above to get first insights. If the language models do not show clear probability
differences based on the templates in this approach, it is unlikely that more subtle distinctions
can be elicited.

Property-prediction The concept-evoking sentences presented above provide semantically
bleached contexts that do not contain a high degree of information. The semantic properties
in the diagnostic dataset can apply to a wide variety of concepts and thus do not provide much
information to the language model. It can be expected that the probabilities for the masked
slot will thus remain low and might be influenced by noise. To make the results more robust,
I add a variation of the task in which the concept is provided, but the property is masked as
shown in Example 26. If the model captures information about the property fly for the word
seagull, but not for the word penguin, this should be reflected in the probabilities it assigns to
flew.

(26) a. The [concept] [mask].

b. The seagull [mask].

c. The penguin [mask].

The two variants of the cloze task assess slightly different types of association: The
concept prediction variant (i.e. the property is given) assesses how strongly a property is
associated with a concept. The property prediction variant assesses how strongly specific
concept evokes the target property. Both scenarios should yield higher probabilities for
positive examples of a property than for negative examples or a property.

Probability Extraction and Normalization

For each property-evoking sentence, I extract the probability distribution over the model
vocabulary (i.e. the softmax probabilities of the final masked token prediction layer) for the
masked token. I extract the probability assigned to the respective target token (i.e. the word
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expressing the concept or property). If the model captures property-evidence, the positive
examples should yield higher probabilities than the negative examples.

When extracting the probability p of a token for a masked position in a sentence, it should
be kept in mind that the probability of the token depends on the context, but also on the
probability of the token independently of the context as pointed out by Kurita et al. (2019).
For instance, the words seagull and penguin may have different probabilities independent
of their specific contexts (due to their frequency and distribution in the training data). This
factor could interfere with the probability comparison.

To account for this type of ‘prior’ probability (pprior) of a word independent of its context,
I use a normalization strategy suggested by Kurita et al. (2019): I use a minimal context to
approximate the prior probability of the target word (either an example concept or the word
expressing the property). As shown in Example 27, I mask the property- or concept-specific
part of the context and extract the probability of the target word given the minimal context.

(27) a. The [mask] flew. (original)

b. The [mask] [mask]. (minimal context)

The second sentence in the example masks the property in addition to the concept and
thus poses a minimal context. The probability of the masked concept in the second sentence
thus approximates the tendency of the language model to predict the concept independent of
the property-evoking context. I compute the normalized probability as log( p

pprior
) following

Kurita et al. (2019).

Interpretation of Probability Differences

In essence, a language model that captures property-information should assign higher prob-
abilities to the positive examples of a property than to negative examples of the property
(concept prediction variant). Likewise, it should assign higher probabilities to the property
when given a sentence containing a positive example of the property than when given a
negative example (property prediction variant). The positive and negative examples in the
diagnostic dataset allow for such a probability comparison. I establish the probability differ-
ence for a specific property by calculating the difference between the mean probability of all
positive examples and the mean probability of all negative examples.

The core difficulty of this task setup is to establish whether an observed difference between
positive and negative examples is likely to be meaningful, or whether it could be due to chance.
In order to establish this, I apply the following, high bar: I assign random labels (i.e. positive
or negative) to all concepts in a property dataset. For instance, the positive and negative
examples of the property fly are randomly assigned to either the positive or negative class (e.g.
airplane and penguin may receive a negative label, bus and bee may receive a positive label).
The resulting randomized dataset should not lead to a meaningful difference between the
mean probability of all randomly assigned positive examples and the mean probability of all
randomly assigned negative examples. If the difference observed on the real label distribution
is meaningful, it should be higher than the difference in the random condition. I repeat the
random label assignment 100 times and use the highest difference as the baseline.
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This high bar entails the following risks: One of the 100 random label assignments could
happen to follow the distribution of the original dataset (a highly unlikely situation). To
ensure that this is not the case, all random label assignments have been checked. A second
risk is that the dataset contains noise and the random label assignment happened to distribute
noisy examples in such a way that it leads to a justified, higher probability difference. While
this scenario is possible, it can still be expected that a clear difference between the majority
of examples should be robust enough result in a high score given a few noisy examples.

10.3.2 Experimental Setup and Results

In this Section, I present the results of the masked token prediction task. The section
is structured as follows: Firstly, I describe the pre-trained contextualized models used to
perform the task. Secondly, I present a validation of the templates. The purpose of the
validation is to show that two cloze task variants (concept prediction and property prediction)
do indeed lead to plausible sentence completion. Thirdly, I present the results of the two task
variants and conduct a comparison.

Contextualized Models

I experiment with two types of transformer-based bidirectional language models: Bert (Devlin
et al., 2019) and Roberta (Liu et al., 2019). While the models share the same architecture,
they differ with respect to pre-training: Bert is trained on masked token prediction and
next sentence prediction, while Roberta is only trained on the former. Both pre-trained
models come in two sizes (Bert-base-uncased and Bert-large-uncased; Roberta-base and
Roberta-large).1 I use both variants of both models in the cloze task experiments.

Template Validation

To illustrate that the template sentences are in principle suitable for this analysis, I have
retrieved the top five predictions for the masked slots for both tasks. The tokens with the
top probabilities should be appropriate concepts or properties. This inspection can indicate
whether the templates are suitable for the task.

Table 10.2 shows the top five tokens predicted for the masked slot in the concept prediction
variant for Bert-large and Roberta-large. It can be observed that for all properties, there are
plausible candidates among the predicted concepts. However, the candidates also contain
noise that is, in many cases, quite obviously the result of superficial lexical associations rather
than a deep, semantic understanding of the sentence (e.g. wings: male, female, species in Bert-
large). Roberta-large seems to produce comparatively more abstract and noisy predictions
(e.g. sweet: life, venge, emption, love, it) than Bert-large (e.g. sweet: blood, water, coffee,
food, smell). The mean prediction probabilities of the top five tokens are below 0.14 (Bert-
large) and 0.02 (Roberta-large). To validate the property-prediction variant of the task, I also
extract the top-five predictions for the properties given the templates containing the concepts.

1All four models were accessed via the huggingface transformers library https://huggingface.co/
transformers/
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bert-large-uncased roberta-large
top5 prob. top5 prob.

square base body aperture shape
tower

0.05 circle square world Square
box

0.04

warm night air day sun room 0.14 weather sun water it air 0.07
black head underside abdomen

iris apex
0.1 author character color

writer background
0.03

red iris mouth color aperture
underside

0.05 color background code
font logo

0.02

dangerous man world situation future
woman

0.04 this world This it news 0.02

wings male female species ani-
mal body

0.11 bird sun cat future devil 0.02

sweet blood water coffee food
smell

0.05 life venge emption love it 0.03

hot water sun air day room 0.12 water it sun weather world 0.02
juicy food fruit meat stuff pie 0.08 story this one This stuff 0.05
green color colour iris underside

bark
0.07 grass color world sky tree 0.03

made_of_wood building roof frame struc-
ture statue

0.05 house furniture chair car
table

0.02

blue sky background ground
iris band

0.07 color background sky code
text

0.04

yellow abdomen underside iris
head body

0.1 color background text
code image

0.02

cold air room night water wind 0.13 world it weather water
winter

0.04

round aperture nest shell body
fruit

0.16 world Earth universe circle
earth

0.07

wheels car boat ship vehicle car-
riage

0.05 bus train car future world 0.04

lay_eggs female male hen species
pair

0.2 chicken hen she also cow 0.03

roll credits cameras camera
thunder wheels

0.09 dice eyes heads we I 0.08

swim water world man fish room 0.04 he she I they we 0.07
fly bullets sparks ball fire

knife
0.05 they he it she I 0.07

used_in_cooking time microwave money
knife heat

0.05 microwave oven stove
time pot

0.08

female woman girl queen witch
lady

0.13 she then finally never
woman

0.08

Table 10.2: Top five predicted tokens and their mean probabilities (raw) for each property-
evoking sentence in Bert large and Roberta large.

Table 10.3 shows the resulting predictions for Bert-large and Roberta-large. In many cases,
the target-property is among the top five predicted tokens. For properties where this is not
the case, the predictions are often related to the target property or can at least be explained
(e.g. crashed for fly, landed for wings). It is important to note that the task does not require
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bert-large-uncased roberta-large
top5 prob. top5 prob.

square empty open gone blank
ringing

0.05 empty full available closed
broken

0.03

warm black white red gone yel-
low

0.05 optional black on white re-
quired

0.02

black black nocturnal edible
dead gone

0.03 dead gone back here over 0.02

red edible white black yellow
gone

0.04 gone dead delicious red
optional

0.01

fly ##s vol press family ##ch 0.03 s </s> here crashed ling 0.01
dangerous dead gone empty over

loaded
0.02 dead back here gone

loaded
0.03

wings wings disappeared arrived
gone died

0.04 arrived landed returned
died crashed

0.06

sweet edible black white yellow
green

0.04 delicious gone here red
ripe

0.02

hot empty white good black
delicious

0.03 on empty delicious op-
tional broken

0.02

used_in_cooking do make cook eat cut 0.08 make cook build do cut 0.08
juicy edible black white yellow

green
0.04 delicious here gone red

ripe
0.02

green edible black white green
yellow

0.04 dead delicious optional
gone here

0.01

made_of_wood wood steel oak iron bam-
boo

0.08 wood steel metal alu-
minum plastic

0.08

blue edible black gone white
empty

0.04 gone dead back broken
pending

0.02

yellow white edible yellow black
good

0.04 dead gone delicious here
good

0.02

roll stopped ##s coaster flick-
ered shook

0.02 s coaster ball list </s> 0.02

female up him interest me her 0.12 up me her off him 0.13
cold empty black cold good

white
0.03 coming empty gone bro-

ken here
0.02

round empty white black edible
gone

0.04 delicious optional empty
gone here

0.02

wheels stopped disappeared ar-
rived wheels no

0.05 arrived stopped wheels
crashed changed

0.05

lay_eggs eggs down low still dor-
mant

0.20 eggs down low dormant
egg

0.15

swim ##s vol press said bass 0.02 bass ex tuna s </s> 0.01

Table 10.3: Top five predicted tokens and their mean probabilities (raw) for each concept-
evoking sentence in Bert large and Roberta large.

the correct answer to be among the top-n predictions. Rather, what is important is that the
probabilities reflect a difference between positive and negative examples of a concept. Overall,
it can be concluded that the templates are suitable for both variants of the cloze task.
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bert-base-uncased bert-large-uncased roberta-base roberta-large

wheels 0.8599 -0.2450 -0.2045 -0.9568
used_in_cooking 0.7189 0.6289 -0.0631 -0.0898
blue 0.3682 0.5814 -0.2181 0.0430
wings 0.2060 0.0680 -0.2580 0.0610
made_of_wood 0.1174 -0.2185 -0.1804 -0.2069
green -0.1442 0.2418 -0.3376 -0.4528
red -0.3955 0.2297 -0.0106 -0.2092
roll -0.1586 -0.0248 -0.4178 0.0682

black -0.0214 -0.3922 -0.3899 -0.4054
lay_eggs -0.0638 -0.0782 -0.3494 -0.2541
round -0.0967 -0.4509 -0.2027 -0.5405
dangerous -0.1107 0.1426 -0.0720 -0.2032
warm -0.2515 -0.3247 -0.4561 -0.9085
swim -0.3011 -0.3299 -0.4365 -1.4518
yellow -0.4086 -0.2713 -0.1660 -0.8454
sweet -0.4299 -0.9187 -0.4289 -0.5302
cold -0.5777 -0.8095 -1.2415 -1.1395
hot -0.6640 -1.3849 -0.5225 -0.7626
fly -0.6919 -0.5358 -0.0727 -1.3138
juicy -0.8733 -1.3109 -0.5426 -0.7680
square -1.6022 -1.4540 -1.2632 -1.5935

female 0.4874 0.5506 -0.1687 -0.4488

Table 10.4: Summarized results of the concept prediction task for both variants of the Bert
and Roberta model. The scores indicate the difference between the observed probability
differences in the true label distribution and the maximum difference out of 100 randomized
label distributions. A difference above 0 indicates that the models show clear differences
between positive and negative examples.

Concept and Property Prediction

In this section, I present the results of the concept and property prediction tasks. To establish
whether the difference is likely to be meaningful, I compare the observed difference on the
task to the maximal difference observed when using random label assignment.

Concept prediction Table 10.4 shows the summarized results of the masked concept pre-
diction variant. The positive values indicate that the difference between the mean probability
of positive examples and mean probability of negative examples is higher then the difference
observed on the random baseline (values shown in bold). Seven properties outperform the ran-
dom baseline in at least one of the four models. Out of the seven properties, three outperform
the random baseline in one of the Roberta models. Roberta-base does not outperform the
random baseline for any of the properties. Both Bert models outperform the random baseline
for the control property female by a clear margin. Neither of the Roberta models outperform
the random baseline for female.
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bert-base-uncased bert-large-uncased roberta-base roberta-large

used_in_cooking 2.3578 2.4782 2.7690 1.8501
wings 1.6188 1.3682 0.6248 -0.0578
hot 0.7840 0.8275 0.0271 0.1887
wheels 0.7061 1.6392 -0.1039 -0.6507
green 0.6025 0.7346 1.2773 1.2120
lay_eggs 0.3598 0.3520 -1.4953 0.1576
warm 0.3383 0.1806 0.1170 0.2956
dangerous 0.2852 0.1376 -0.6905 -0.7087
fly 0.1102 0.5100 -0.8065 -0.7780
made_of_wood 0.1076 0.3995 0.1014 0.5360
blue 0.0691 -0.0576 -0.1578 0.1311
yellow 0.0069 -0.1509 -0.7169 -0.6117
sweet -0.0147 0.3960 0.8809 0.6800
juicy -0.2231 0.1846 -0.3222 -0.8769
swim -0.6935 0.5897 -0.5413 -0.3684
cold -0.0283 -0.7279 0.6181 -0.2748

red -0.2063 -0.1814 -0.4320 -0.2236
round -0.4573 -0.2933 -1.0528 -0.3465
black -0.5344 -0.4560 -0.7690 -0.2760
roll -0.6580 -0.6652 -0.4178 -0.9240
square -1.8323 -1.7282 -3.1179 -1.8037

female 2.1705 1.7841 -0.4563 -1.2669

Table 10.5: Summarized results of the property prediction task for both variants of the Bert
and Roberta model. The scores indicate the difference between the observed probability
differences in the true label distribution and the maximum difference out of 100 randomized
label distributions. A difference above 0 indicates that the models show clear differences
between positive and negative examples.

Property prediction Table 10.5 shows the summarized results of the property prediction
variant. It can be seen at first glance that many more properties outperform the random
baseline on this task in the Bert models (16 compared to 7). Most properties that outperform
the baseline also do so by a considerably higher margin than on the concept-prediction task
(2.3578 vs 0.7189 for used_in_cooking Bert-base). As in the concept prediction challenge,
the Roberta models outperform the random baseline for fewer properties than the Bert models
(8 for Roberta-base v.s. 12 for Bert-base and 8 for Roberta-large v.s. 13 for Bert-large).
Both Bert models outperform the random baseline for the control property female with a
considerable margin, but neither of the Roberta models do.

Task Comparison

The results of the two cloze tasks indicate that the prediction of a property given a context
containing a concept is considerably easier for the contextualized models than the prediction
of a concept given a property. A possible explanation for this behavior could lie in the
difference of categorical specificity expressed by concepts and properties. Bolognesi et al.
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(2020) discuss concreteness and categorical specificity (as defined by Borghi and Binkofski
(2014)) as two distinct phenomena involved in abstraction. Two concrete concepts can have
different levels of categorical specificity: rocking chair (high specificity) versus furniture
(low specificity). Concepts with high specificity carry a high number of semantic properties
and can thus apply to a comparatively small set of referents in the world. It could be argued
that concepts with high categorical specificity appear in a comparatively small selection of
different linguistic contexts and provide better, more informative indications for a language
model than a categorically less specific concept. The properties as well as the concepts in the
diagnostic datasets could be seen as concepts of different levels of categorical specificity: For
instance, the property wings also expresses the concept wings. When compared to some of
the concepts in the dataset (e.g. dragonfly, sparrow), it can be argued that the property has
lower categorical specificity. This intuition can also be explained as follows: It is much more
likely to think of wings when presented with the word dragonfly than the think of dragonfly
when presented with the word wings. In this section, I explore these intuitions on the basis of
a small set of model predictions in the two task variants.

label concept property
prob_norm prob prob_norm prob

wasp pos 3.0825 0.0003 7.333 0.2898
bat pos 2.6084 0.001 7.3964 0.3088
eagle pos 2.0552 0.0004 8.2918 0.756
crow pos 2.0223 0.0005 7.0214 0.2122
beetle pos 2.0147 0.0011 6.6249 0.1428
robin pos 1.929 0.0001 3.2144 0.0047
worker neg 1.9073 0.0002 1.3656 0.0007
queen neg 1.8885 0.0021 -0.1162 0.0002
moth pos 1.8568 0.0027 6.5584 0.1336
insect pos 1.529 0.0016 7.4471 0.3248
bird pos 1.3928 0.005 7.2665 0.2712
kite neg 1.3134 0.0001 6.5757 0.1359
drone pos 1.1308 0.0002 1.0869 0.0006
clarence neg 1.0887 0 2.6964 0.0028
monarch neg 1.0539 0.0002 0.1709 0.0002
hen pos 0.8963 0 5.4375 0.0435
parachute neg 0.8913 0 -0.4467 0.0001
flea neg 0.8031 0 4.3416 0.0146
plane pos 0.7372 0.0008 5.8557 0.0661
nightingale pos 0.6944 0 6.3744 0.1111

Table 10.6: Top 20 concepts with the highest normalized and raw probabilities in the concept
prediction task (‘concept’) compared to the property prediction task (‘property’) for the
property wings in Bert-base.

To explore the differences between the two task variants, I inspect the top 20 predictions
for the property wings in the Bert-base model. Table 10.6 shows the 20 highest probabilities
assigned to concepts given the property wings. Table 10.7 shows the 20 highest probabilities
assigned to the property wings given the concepts in the dataset. Both tables also show
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label property concept
prob_norm prob prob_norm prob

eagle pos 8.2918 0.756 2.0552 0.0004
dragonfly pos 7.5428 0.3574 -1.1437 0
insect pos 7.4471 0.3248 1.529 0.0016
sparrow pos 7.409 0.3127 -0.417 0
bat pos 7.3964 0.3088 2.6084 0.001
gnat pos 7.3853 0.3054 -1.1437 0
wasp pos 7.333 0.2898 3.0825 0.0003
ant neg 7.2672 0.2714 -1.2166 0
bird pos 7.2665 0.2712 1.3928 0.005
damselfly pos 7.0873 0.2267 -1.1437 0
crow pos 7.0214 0.2122 2.0223 0.0005
owl pos 6.8499 0.1788 0.1195 0
cabriolet neg 6.6319 0.1437 -1.1437 0
beetle pos 6.6249 0.1428 2.0147 0.0011
kite neg 6.5757 0.1359 1.3134 0.0001
grasshopper pos 6.5708 0.1352 -1.1437 0
moth pos 6.5584 0.1336 1.8568 0.0027
falcon pos 6.432 0.1177 -1.2053 0
nightingale pos 6.3744 0.1111 0.6944 0
duck pos 6.358 0.1093 -1.5784 0

Table 10.7: Top 20 concepts with the highest normalized and raw probabilities in the property
prediction task (‘property’) compared to the concept prediction task (‘concept’) for the
property wings in Bert-base.

the probabilities assigned to the property or concept in the respective other variant of the
challenge. Overall, it can be observed that the probabilities assigned to concepts given the
property are generally lower than the probabilities assigned to the property given the concept.
The same tendency can also be observed on the level of specific concepts: For example,
the probability assigned to eagle given the property wings is much lower (2.0552) than
the probability assigned to wings given eagle (8.2918). This difference could be seen as a
first indication that the concepts provide overall more categorically specific and thus more
informative concepts than the properties.

When considering individual concepts given the property (Table 10.6), it is striking
that several negative examples receive comparatively high probabilities: queen, worker,
monarch, kite. All words except for kite trigger comparatively low probabilities in the
property-prediction task. Three out of the four examples are ambiguous and have senses for
which the property wings applies (queen in the sense of bee, monarch in the sense of butterfly,
worker in the sense of insect). Kite could be seen as a vague concept with respect to the
having wings: Kites do not have typical wings, but technical descriptions of kites use the
term wings.2 The (perhaps somewhat unpopular) senses of the three ambiguous words are not
reflected by the crowd annotations. The probabilities assigned in the property-prediction task

2The term wings is mentioned in the Wikipedia article about kites https://en.wikipedia.org/wiki/
Kite (last accessed 2021/10/27).
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follow the crowd-intuitions and the arguably more popular senses (e.g. queen in the sense
of female monarch), while the probabilities assigned in the concept-prediction reflect the
senses of the words to which the property wings applies (e.g. queen in the sense of bee). It is
likely that the context containing the word wings simply triggers representations of the less
popular uses of the ambiguous words. This behavior illustrates that Bert-base does indeed
use a contextualized approach; it seems to access the representation of the word queen that
best fits the context of the word wings. The different representations of polysemous words
may indeed approximate different senses.

When considering the probabilities predicted for the property wings given a sentence
containing the concepts presented in Table 10.7, the following observations can be made:
For several of the top-ranked concepts, there is a strikingly high difference in probabilities
between the two challenges (e.g. dragonfly, sparrow, gnat, damselfly). For these concepts,
the probabilities predicted given the property are strikingly low. The concepts do not rank
among the top-predicted concepts in the concept prediction task. It could be argued that these
concepts are categorically highly specific and provide a stronger signal to the language model
than the property wings. In other words, the concept dragonfly is more likely to evoke the
property wings while the property wings is unlikely to trigger the categorically highly specific
concept dragonfly.

The property prediction challenge also assigned high probabilities to negative examples
(ant, cabriolet, kite). All of the three examples can be explained: Parts of kites can be called
wings and certain types of ants have wings. Thus, the annotations for kite and ant can be seen
as inaccurate. In the context of cabriolet, the word wings can refer to a car-part (protective
mud wings surrounding the wheel). It is possible that the word cabriolet triggered this use of
the word wings. This observation illustrates the ability of a contextualized language model to
select word representations based on context (and thus possibly approximate word senses).
However, in the current task set-up, it has the disadvantage that this ability of the model
complicates the interpretation of its performance on the task.

To summarize, the comparison of the top-20 probabilities predicted in the two masked
token prediction tasks yielded the following insights: Firstly, it seems that the property-
prediction variant of the task tends to trigger higher probabilities and could be seen as ‘easier’
for the language model. A likely reason for this tendency is that the concepts tend to be
categorically more specific than the property. The word expressing the property is thus
a salient context of the concept, but the concept is not salient for the property. This is
particularly apparent for highly specific concepts (e.g. damselfly). Secondly, the analysis
showed that Bert does indeed capture context-specific representations of words.

10.4 Study 2: Winograd-Style Challenge

The second study presented in this chapter constitutes an exploration of the reasoning abil-
ities of contextualized models fine-tuned on the Winogrande training set (Sakaguchi et al.,
2020).3 The Winograd Schema Challenge (Levesque et al., 2012) was designed to assess the

3The study was conducted in collaboration with Sanne Hoeken and Piek Vossen. Sanne Hoeken generated the
Winograd-style dataset and implemented the experimental set-up. The section is based on a first draft of a paper
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common sense reasoning abilities of NLP systems by means of a pronoun resolution task (see
Example 28):

(28) The trophy doesn’t fit into the brown suitcase because it is too large.

The original dataset was criticized for containing biases as models started to reach close
to human performance (Sakaguchi et al., 2020). As an alternative, Sakaguchi et al. (2020)
proposed Winogrande, a larger dataset that has specifically been checked for potential biases
models can exploit, such as obvious lexical associations that can point towards the correct
answer without requiring deeper reasoning.

The goal of the study presented in this chapter is to explore whether models fine-tuned on
the Winogrande training set learned how to reason over semantic properties. The Winogrande
test set does not contain systematic information about what type of common sense knowledge
it captures. We study semantic property knowledge and reasoning abilities in fine-tuned
models systematically by means of a Winograd-style challenge dataset constructed around
the properties and concepts in the diagnostic dataset.

To gain systematic insights into the information about semantic properties captured by
language models, the properties and concepts in the diagnostic dataset have to be embedded
into WSC-style sentences. In an initial exploration, we approached this problem by searching
for examples in the Winogrande dataset that contain the semantic properties and concepts
from the diagnostic dataset. We searched for examples in the Winogrande test set that could
provide indications about property knowledge. Initially, we used the following strategy:
We searched for sentences that contained a property, a positive example concept from the
property dataset and a negative example from the property dataset. As this search did not
return examples, we loosened the search criteria as follows: We searched for words in the
Winogrande dataset that have a high cosine similarity to concepts and properties from the
diagnostic dataset.4 The searches only returned a small set of noisy examples (38) that would
have required manual filtering.

To exploit all properties and concepts in the diagnostic dataset, we opt for a template-based
approach. We automatically generate Wingrad sentences by embedding the properties and
concepts in a set of different templates. While template-based approaches can be criticized
for resulting in potentially unnatural-sounding sentences, they have the advantage of allowing
for systematic variations. Such variations can be used to explore the behavior of a model.

10.4.1 Method and Data

In this section, we present the template-based approach used to construct Winograd-style
examples around properties and concepts from the diagnostic dataset. A consequence of
the template-based approach is that all test-instances have the same syntactic structure. We
present how we can exploit systematic variations in the templates to explore whether the
fine-tuned models are likely to base their decision on actual property knowledge or whether

written in collaboration with Sanne Hoeken and Piek Vossen.
4The cosine similarity was measured on the basis of the GoogleNews embedding models https:

//drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=
0-wjGZdNAUop6WykTtMip30g. We experimented with different similarity thresholds.
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they fall back on different structural features of the template sentences. It should be noted
that our template-based dataset is only used for evaluation. We experiment with the models
fine-tuned on the Winogrande dataset by Sakaguchi et al. (2020).

Winograd Templates

To test property knowledge in a contextualized task, we embed our concept pairs and properties
in generic sentences based on a variety of templates. The main motivation behind picking
generic sentences is that they are compatible with any combination of properties and concepts.
For example, we embed the combination of penguin, seagull and fly in a generic sentence
(Example 29). Such templates provide semantically bleached contexts and thus have the
additional advantage that they are unlikely to introduce unwanted semantic associations or
biases.

(29) John prefers the seagull over the penguin because the _ can fly.

We created a total of eight different templates to introduce a variety of different, but
still generic sentences. A full overview can be seen in Table 10.8. Each combination of
concept pair and property is assigned to one of the templates at random. This method
eventually resulted in a dataset consisting of 106,654 instances containing 21 different
semantic properties and the control property, 1,337 different positive concepts and 906
different negative concepts.5

Template-based approaches have the disadvantage that the sentences presented to the
language model are noticeably artificial and the combination of concepts and properties
might be unexpected for a language model in several instances. However, they still adhere
to appropriate syntax and morphology and contain grammatical constructions the model is
likely to have seen during pre-training and fine-tuning.

The templates we use have the advantage of a minimal semantic context. Thus, the
chances of inferring the correct answer based on other context than just the target concepts
and properties is low. Furthermore, the templates allow for testing the effect of systematic
context variations, which can help us to detect whether the models do exploit spurious
correlations unrelated to the target information.

Systematic Template Variations

To test whether the templates introduce spurious correlations that the models can exploit, we
(1) consider factors already present in the templates and (2) introduce an additional variation
with respect to marked and unmarked discourse structure.

The templates introduced in the previous section differ with respect to the following
aspects: Predicates: Each of the 8 templates is constructed around a different predicate.
Syntactic structure: Five of the templates place the concepts in object position and use a
person (expressed by a generic name) in subject position. Two of the templates place one

5The full dataset can be found in the following Github repository, together with the code used for our ex-
periments on the fine-tuned models: https://github.com/SanneHoeken/diagnostic_dataset_
experiments
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John prefers the [concept] over the [concept] because the _ [PROP].
John prefers the seagull over the penguin because the _ can fly.

John replaced the [concept] by the [concept] because the _ [PROP].
John replaced the orange by the lemon because the _ is yellow.

John chose the [concept] instead of the [concept] because the _ [PROP].
John chose the peach instead of the wintergreen because the _ is sweet.

John likes the [concept] but not the [concept] because the _ [PROP].
John likes the currant but not the chipotle because the _ is sweet..

The [concept] is better than the [concept] because the _ [PROP].
The broccoli is better than the tyre because the _ is green.

The [concept] is worse than the [concept] because the _ [PROP].
The bear is worse than the parrotfish because the _ is blue.

John has the [concept] and the [concept], the _ [PROP].
John has the beer and the quesadilla, the _ is cold..

There is the [concept] and the [concept], the _ [PROP].
There is the oregano and the plane, the _ is used in cooking.

Table 10.8: Overview of Winograd templates.

of the concept options in subject position. One template places the candidates in subject
complement position. We evaluate each variation separately to determine whether the two
factors have an impact on performance.

The structure of the templates allows for varying the sequence in which the candidate
concepts are mentioned. For instance, the example sentence introduced in the previous section
can be modified by switching the positions of seagull and penguin, as shown in Example 30.
The modified version of the sentence constitutes an uncommon and unexpected structure
because the concept placed in the focus position (penguin) is not the concept selected by the
property. We consider this manner of presenting information a marked discourse structure.
If a model has sufficient information about semantic properties, it should be able to recognize
the connection between the property and the concept despite the marked structure. In contrast,
if a model does not receive a sufficiently strong signal from the property-concept combination,
it is likely to rely on other signals and will thus be fooled by the unconventional structure.

(30) John prefers the penguin over the seagull because the _ can fly.

When considering the marked and unmarked variants (shown in Table 10.9), it can be
noticed that not all variations appear to be marked equally strongly. We can observe that the
patterns using the predicates prefers and chose have strongly marked variants. In contrast, the
variants of the patterns using has and there is are almost equally expected. We test the effect
of marked and unmarked discourse structures by evaluating both possible structures for each
instance in the test data.
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Unmarked Marked
John prefers the [POS] over the [NEG] because
the _ [PROP].

John prefers the [NEG] over the [POS] because
the _ [PROP].

John prefers the seagull over the penguin be-
cause the _ can fly.

John prefers the penguin over the seagull be-
cause the _ can fly

John replaced the [NEG] by the [POS] because
the _ [PROP].

John replaced the [POS] by the [NEG] because
the _ [PROP].

John replaced the orange by the lemon because
the _ is yellow.

John replaced the lemon by the orange because
the _ is yellow.

John chose the [POS] instead of the [NEG] be-
cause the _ [PROP].

John chose the [NEG] instead of the [POS] be-
cause the _ [PROP].

John chose the peach instead of the wintergreen
because the _ is sweet.

John chose the wintergreen instead of the peach
because the _ is sweet.

John likes the [POS] but not the [NEG] because
the _ [PROP].

John likes the [NEG] but not the [POS] because
the _ [PROP].

John likes the currant but not the chipotle be-
cause the _ is sweet.

John likes the chipotle but not the currant be-
cause the _ is sweet.

The [POS] is better than the [NEG] because the
_ [PROP].

The [NEG] is better than the [POS] because the
_ [PROP].

The broccoli is better than the tyre because the
_ is green.

The tyre is better than the broccoli because the
_ is green.

The [POS] is worse than the [NEG] because the
_ [PROP].

The [NEG] is worse than the [POS] because the
_ [PROP].

The parrotfish is worse than the bear because
the _ is blue.

The bear is worse than the parrotfish because
the _ is blue.

John has the [POS] and the [NEG], the _-
[PROP].

John has the [NEG] and the [POS], the _-
[PROP].

John has the beer and the quesadilla, the _ is
cold.

John has the quesadilla and the beer, the _ is
cold..

There is the [POS] and the [NEG], the _ [PROP]. There is the [NEG] and the [POS], the _ [PROP].
There is the oregano and the plane, the _ is used
in cooking.

There is the plane and the oregano, the _ is used
in cooking.

Table 10.9: Overview of marked and unmarked Winograd templates.

10.4.2 Experimental Setup and Results

This section presents the fine-tuned models under investigation and the results of evaluating
the fine-tuned models trained on Winogrande on our Winograd-style task. To gain deeper
insights into the model decisions, we explore the effects of systematic variations in the
Winograd templates.

Contextualized Models

We evaluate existing fine-tuned models on our template-based dataset. Sakaguchi et al. (2020)
have fine-tuned the large variants of both models on the training split of the Winogrande
dataset. The fine-tuned models have been trained on a multiple-choice task: The model is

217



CHAPTER 10. CHALLENGING CONTEXTUALIZED LANGUAGE MODELS

ft-Winogrande pt (baseline)
Dataset Berta Roberta Bert Roberta

templates 0.562 0.664 0.497 0.515
Winogrande 0.649 0.791 0.568 0.559

Table 10.10: Accuracy of contextualized language (Bert-large-uncased and Roberta-large)
models on the Winograd-style property challenge and the Winogrande dataset. Results are
shown for the fine-tuned models (trained on the Winogrande training set) and the pre-trained
models (baseline).

given two versions of a Winograd sentence as input. In each version, the blank is filled by one
of the referent candidates. The [CLS] token is then used to classify the sentence candidates
as correct or incorrect. If the models do indeed acquire the ability to reason over common
sense knowledge in the training process, they should also succeed on our template-based
Winograd-style challenge. We use the fine-tuned models provided by Sakaguchi et al. (2020)6

and test them on our template-based dataset.
To test whether the fine-tuning process does indeed help models to identify the right

information and predict the correct referent, we compare the fine-tuned models to their
pre-trained variants (bert-large-uncased and roberta-large). It is possible to use pre-trained
models without fine-tuning by using a masked token prediction task to fill in the gap (e.g
Ettinger, 2020). In this set-up, the gap is replaced by a masked token ([mask]). We extract the
probabilities of the two candidates given the sentence and chose the candidate with the higher
probability. We use the pre-trained models as a baseline.

Winograd-Style Task

Table 10.10 shows the overall accuracy of Bert and Roberta on our template-based dataset.
Both fine-tuned models perform above chance level and considerably lower than on the
Winogrande dataset (performance taken from the Winogrande leaderboard7). Both fine-tuned
models perform higher than their pre-trained variants on the template-based dataset and on
the original Winogrande dataset.8 As on the original dataset, fine-tuned Roberta outperforms
fine-tuned Bert. In the remainder of this section, we focus on the analysis of the fine-tuned
models only.

Since our property-concept dataset allows for a systematic exploration of different seman-
tic properties, we present the accuracy per property and property category in Table 10.11. We
see that both models perform in similar ranges for most properties and property-categories.
The only striking effect we can observe is that Roberta performs almost perfectly (accuracy
of 0.946) for the control property female. For four properties, Roberta performed above 0.70:
hot, sweet, cold, blue. Bert cannot go beyond an accuracy score of 0.652 (for the property
hot) and performs comparatively low on the control property female (0.563).

6We have downloaded the fine-tuned models from https://winogrande.allenai.org/
7https://leaderboard.allenai.org/winogrande/submissions/public
8The scores of the pre-trained models for Winogrande are taken from Klein and Nabi (2021).
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10.4. STUDY 2: WINOGRAD-STYLE CHALLENGE

Category Property Bert Roberta Supp.

complex
dangerous 0.579 0.606 4620
used_in _cooking 0.590 0.631 6890

function/action

fly 0.558 0.608 6760
roll 0.528 0.586 2310
swim 0.521 0.512 4747

perceptual (taste)
juicy 0.522 0.586 5888
sweet 0.579 0.725 6336

part
wheels 0.564 0.697 2106
wings 0.576 0.677 6888

perceptual (temperature)
cold 0.613 0.744 1680
hot 0.652 0.771 4429
warm 0.516 0.615 4788

taxonomic lay_eggs 0.549 0.524 5250

perceptual (color)

black 0.553 0.675 4770
blue 0.558 0.708 6600
green 0.557 0.654 6486
red 0.554 0.649 6348
round 0.562 0.562 2060
square 0.549 0.657 1980
yellow 0.601 0.641 3784

perceptual (material) made_of_wood 0.534 0.691 4500

gender (control) female 0.563 0.946 7434

Table 10.11: Accuracy scores of the fine-tuned models on the Winograd-style property
challenge per semantic property.

If a fine-tuned model learned to reason over semantic properties, we would expect that the
pre-trained variant of the model also captures information about the property in question (at
least to some degree). The results of the cloze-tasks presented Section 10.3 should be in line
with the results of the Winograd-stype property challenge. For three out of the four highly
performing properties, the pre-trained variant of the Roberta model has performed above
a random baseline in at least one of the cloze tasks presented in Section 10.3 (hot, sweet,
blue). It is striking that the pre-trained Roberta model did not perform above the random
baseline for the control property female in any of the cloze variants presented in Section 10.3.
This discrepancy between pre-trained and fine-tuned models poses the question of whether
the fine-tuned Roberta model could have learned to reason over gender information. An
alternative explanation for the exceptionally high performance of the fine-tuned Roberta
model is that the model learned to exploit biases in the training data.

Effects of Template-Variations

In this section, we test whether systematic variations in the templates have an effect on
the results. We explore the impact of the predicates, the syntactic structures and different
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discourse structures. It should be noted that templates were assigned to triples of a property,
a positive example, and a negative example at random. This has the consequence that the
comparisons between different templates do not necessarily contain exactly the same property-
concept combinations. In future work, it could be considered to compare the behavior of the
models given minimal pairs (i.e. equivalent property-concept combinations that only differ in
terms of a specific template variation).

Table 10.12 shows the performance of the two models with respect to the predicates
around which the templates have been constructed. While most templates show similar
performance, we can observe that has _ and _ and is _ and _ seem to lead to slightly higher
performance than the other predicates.

predicate Bert RoBerta support

_ is better than _ 0,508 0,596 13022
_ is worse than _ 0,514 0,592 13274
chose _ instead of _ 0,523 0,648 13433
has _ and _ 0,686 0,771 13298
there is _ and _ 0,689 0,775 13416
likes _, but not _ 0,520 0,653 13438
prefers _ over _ 0,524 0,649 13296
replaced _ by _ 0,528 0,628 13477

Table 10.12: Mean accuracy score of contextualized language models on the template dataset
with respect to the different predicates.

Table 10.13 shows the results of the two models with respect to the syntactic position of
the candidate concepts in the templates. The models perform slightly higher for templates
with the concepts in object position than in subject position. The highest performance is
reached by concepts in subject-complement position. Subject complement position is only
the case for one type of template using the predicate is _ and _. The difference may also be
caused by word order rather than syntax: In terms of word order, the subject-complement
template is similar to the object-position template.

Syntactic position Bert-ft RoBerta-ft Support
object 0.556 0.670 66942
subject 0.511 0.594 26296
subject complement 0.689 0.775 13416

Table 10.13: Mean accuracy score of contextualized language models on the templates with
respect to syntactic structure.

When considering the impact of discourse structure we found that overall, unmarked
discourse structure leads to considerably higher performance than marked structure (0.76
vs 0.37 for Bert and 0.80 vs 0.53 for Roberta). For marked discourse structure, the models
perform clearly below chance level. When considering the variations by template type
(Table 10.14), we can see that model performance follows the expected pattern for all cases
except _is worse than _. The two predicates _has and _ and is _ and _ show a much smaller
difference in performance.
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predicate m/u Bert Roberta supp.

prefers [p] over [n] u 0,8 0,841 6662
prefers [n] over [p] m 0,249 0,457 6634

replaced [n] by [p] u 0,76 0,761 6700
replaced [p] by [n] m 0,296 0,494 6777

chose [p] instead of [n] u 0,812 0,819 6759
chose [n] instead of [p] m 0,233 0,478 6674

likes [p] but not [n] u 0,78 0,831 6751
likes [n], but not. [p] m 0,261 0,474 6687

[p] is better than [n] u 0,823 0,861 6510
[n] is better than [p] m 0,193 0,331 6512

[p] is worse than [n] u 0,287 0,466 6659
[n] is worse than [p] m 0,742 0,718 6615

has [p] and [n] u 0,639 0,772 6761
has [n] and [p] m 0,733 0,771 6537

there is [p] and [n] u 0,684 0,784 6599
there is [n] and [p] m 0,694 0,767 6817

Table 10.14: Accuracy score of contextualized language models on the templates with respect
to markedness (m/u) of the individual templates. In this analysis, markedness depends on the
sequence in which the candidate concepts are mentioned in combination with each predicate.

A possible explanation for this effect may be the positive and negative connotation
imposed by the predicate. The word worse in close proximity to the correct candidate referent
imposes a strong negative association which makes the model less likely to produce it as an
answer. In many cases, a candidate that is depicted negatively will not be the correct answer.
Five of the other predicates impose a positive connotation on the example they are closest
too. The two templates with neutral predicates (_has and _ and is _ and _) show hardly any
performance difference. We conclude that word associations from the context may also act as
clues for the models. At this point, we cannot determine whether the performance differences
are due to discourse structure or connotation imposed by the predicate.

Potential biases in Winogrande

In order to get additional insights into the potential effects of the discourse structure, we
attempted an analysis of examples in the Winogrande development set. Specifically, we
searched for instances which have the same predicates as our templates and allow for a marked
and unmarked discourse structure without changing their meaning. Our search resulted in
14 examples. For each of the 14 examples, we added a marked or unmarked variant (see
Appendix ). Based on the resulting 28 instances, we cannot see a clear performance difference
with respect to markedness (Table 10.15).

This analysis indicates that discourse structure is unlikely to constitute a bias in the
Winogrande dataset. Rather, it can be expected that the language models capture conventional
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structures in the pre-training process (simply because they are much more common). When
not being able to rely on the knowledge required to make the correct decision, they simply
rely on the information provided by the discourse structure. The fact that the Winogrande test
instances shown in Table 10.15 do not trigger the same model behavior as the templates may
be an indication that highly unnatural templates with unexpected discourse structure constitute
a high distraction to the language model. To get more insights it could be considered to
explore the behavior of language models with respect to discourse structure by means of a
larger dataset of minimal pairs of natural sentences.

Markedness Bert-ft Roberta-ft Support

marked 8/14 8/14 14
unmarked 9/14 8/14 14

Table 10.15: Total number of correct predictions of contextualized language models on the
filtered and expanded Winogrande development set split based on the marked and unmarked
discourse structure.

10.5 Discussion and Conclusion

The goal of this chapter was to assess the semantic knowledge captured by pre-trained and fine-
tuned contextualized language models by means of the diagnostic dataset. I have presented an
analysis of token probabilities in cloze tasks (Study 1 in Section 10.3) and a template-based
challenge constructed around positive and negative examples of semantic properties (Study
2 in Section 10.4). The cloze task assesses to what degree property-specific knowledge is
captured by the pre-trained contextualized models. The Winograd-style challenge, in contrast,
assesses to what degree models fine-tuned on a common sense reasoning task (in this case the
Winogrande task) can reason over semantic properties.

It is possible to draw the following conclusions: Based on the cloze tasks, it is apparent
that both pre-trained Bert models capture property-specific knowledge to some degree. Bert-
large performed successfully on 13 out of 21 properties. Roberta, in contrast, performed
successfully on considerably fewer properties. While Bert outperformed the random baseline
for the control property in both task variants, Roberta did not do so in any of the task variants.
It should be kept in mind that ‘success’ was defined as outperforming the best out of 100 tasks
with randomized label distributions, which constitutes a high bar. It is, however, surprising
Roberta could not beat this bar for gender information, which is highly likely to be encoded
in distributional patterns.

It is striking that pre-trained Roberta could only outperform the random baseline for a
few properties in the cloze task. A possible reason for this could lie in the difference in
pre-training regimes between Bert and Roberta: Both models are trained on masked token
prediction. In contrast to Roberta, Bert is also trained on next sentence prediction. It is
possible that property information does not occur in immediate proximity to the concept.
Rather, it may be mentioned outside of same sentence. If this is indeed the case, Bert can still
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capture this information, while Roberta has no way of accessing it. This hypothesis could be
explored in further research.

The two variants of the cloze task capture slightly different associations. The analysis of
predicted probabilities for either the concept or property indicated that models tend to capture
an association from concept to property, but not necessarily the other way around. This could
be explained by the tendency of concepts in the dataset to be categorically specific compared
to the properties. This difference does not necessarily have consequences for what could be
learned on a common sense reasoning task in which both properties and concepts are present
in the examples.

The Winograd-style challenge assessed two models fine-tuned on the Winogrande training
set. The task contains Winograd instances that should require common sense reasoning. If the
fine-tuned models have indeed learned to access common sense knowledge and reason over it,
they should perform highly on our template-based challenge. While both models performed
above a random (chance-based) baseline, the results remained modest. Roberta achieved 0.94
for the control property female, but remained below 0.75 for all other properties. Bert could
not go beyond 0.66.

If property-information is encoded in the models, we would expect to see first indica-
tions in the pre-trained models tested on masked token prediction. When comparing the
performance of the pre-trained to the fine-tuned models for individual properties, it is striking
that there is no clear alignment: It is not the case that properties with high results in the
token prediction task also lead to high performance on the Winograd-style task. This contrast
is particularly stark when considering Roberta: Roberta clearly outperforms Bert in the
Winograd-style task, but performed worse than Bert in the cloze tasks. It is particularly
surprising that the fine-tuned Roberta model achieved almost perfect performance for the
control property in the Winograd-style set-up while the pre-trained Roberta model could not
achieve high performance on the cloze task involving the control property. This divergence
poses the question of what the models learned during fine-tuning. Could the fine-tuning
process indeed foreground information that is not apparent from the pre-training models (as
is the case for the property female)? What kind of information did the models use to arrive at
decisions?

One possibility is that the models learned to exploit superficial features to arrive at the
correct answer, such as certain types of discourse structure. To investigate whether the models
exploit this information rather than semantic information, we experimented with systematic
variations in the templates. The results showed that both models perform considerably higher
on unmarked discourse structure variants than on marked ones. This stark performance
difference indicates that the models may be much more sensitive to superficial features than
to the semantic information expressed in the sentences. Regardless of whether they contain
property-information, the signal provided by the discourse structure was stronger than the
signal provided by the semantic triggers. Given the strong signal from the discourse structure,
it is difficult to tell whether the models fine-tuned on the Winogrande training set learned to
reason over the semantic properties and concepts in our diagnostic dataset or whether they
only learned to exploit superficial features. Whether they acquired any reasoning abilities
about other aspects of common-sense knowledge remains an open question for future research.
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The experiments presented in this section have the following limitations: Firstly, the
masked token prediction task does not take into account that property information can be
expressed in various ways, which may differ with respect to different semantic categories
(e.g. dangerous may be expressed differently for dangerous animals, criminals, weapons or
substances). Secondly, the Winogrande training set may simply not be suitable to fore-ground
semantic property knowledge. Rather, it may emphasize aspects that arise from the specific,
compositional contexts of the Winogrande sentences. In future work, it could be considered
to fine-tune models on sentences that highlight property-specific knowledge.

10.6 Summary

In this chapter, I have taken the first steps towards analyzing semantic property knowledge
captured by contextualized language models by means of two tasks. The masked concept
prediction task can provide insights into whether property-evidence in text triggers higher
probabilities for positive examples of a property than for negative examples in pre-trained
language models. Vice-versa, the property-prediction task shows whether positive examples
of a property trigger higher probabilities for the property than negative examples. The results
showed that pre-trained models follow this behavior for a subset of properties in the diagnostic
dataset.

The Winograd-style property task tests whether fine-tuned models trained to perform
on the Winogrande challenge can use their knowledge and reasoning abilities to distinguish
positive and negative examples of a semantic property. The models achieved above-random,
but overall much lower performance on this task than on the Winogrande test set. Additional
analysis indicates that the models rely much stronger on discourse structure than on property
knowledge. Even if the models capture property knowledge to some extend, the signal is
weak and seems to be overpowered by unconventional formulations.
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Conclusions

Main Findings

The central focus of this thesis was placed on the investigation of semantic property knowledge
in distributional representations of word meaning. Specifically, the research presented in the
preceding chapters aimed to answer the following research question:

What aspects of conceptual knowledge are reflected by the co-occurrence patterns captured
by large-scale language models?

I have addressed this central research question through three major components: (1) The
thesis proposed a model for testing semantic property knowledge in distributional represen-
tations (Part II). (2) Based on the model, I have created a diagnostic dataset by means of
eliciting semantic judgments from crowd workers (Part III). (3) I have used the diagnostic
dataset to design diagnostic experiments for context free and contextualized semantic repre-
sentations. To complement the experimental results, I have exploited the contrastive nature of
the dataset to verify experimental results by means of corpus analysis (Part IV). In this section,
I summarize the main findings that arose from the research conducted in the three parts of
the thesis. I group them by topic and link them to the three steps I used to operationalize the
main research question:

Step 1 : Create a model of conceptual knowledge and property expression for the investiga-
tion of language model representations.

Step 2 : Capture human conceptual knowledge in a dataset suitable for the investigation of
language models.

Step 3 : Use interpretability methods for context-free and contextualized language models
to study which aspects of semantic knowledge they represent.

A Dataset as a Diagnostic Tool

Step 1 The core of the methodological approach taken in this thesis lies in the construction
of a dataset as a diagnostic tool. The dataset was constructed in such a way that it follows the
methodological challenges of analyzing context-free embedding representations (Chapter 4).
The main challenge of diagnosing specific semantic properties in embedding vectors by means
of diagnostic classification is the danger of achieving high classification performance on the
basis of accidental correlations rather than the fact that the classifiers could identify the target
property. Such a scenario is likely to occur if the positive examples of a property can easily be
separated from the negative examples of a property on the basis of other salient features. For
instance, if all positive examples of the property red share a semantic category (e.g. FRUIT:
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strawberry, raspberry, cherry) and all negative examples share a different category (e.g.
FURNITURE: table, chair, closet), successful classification performance is not indicative for
the target property. To avoid such outcomes, the positive and negative examples of a property
have to follow a specific distribution: Ideally, positive examples should represent a diverse
set of semantic categories. This was achieved by selecting properties that apply to a diverse
set of concepts. In addition, negative examples should be similar to positive examples. This
requirement was fulfilled by means of specific selection strategies. If these requirements are
fulfilled, successful classification is likely to indicate that the property in question is reflected
by the distributional representations.

Step 2 In order to determine whether the dataset resulting from crowd annotations can
indeed pose a sufficiently high challenge in diagnostic experiments, I analyzed the dataset
with respect to its diagnostic power (Chapter 7). The analysis revealed that the datasets
for different semantic properties vary in difficulty; while some properties run risk of being
comparatively easy and possibly containing correlations (e.g. the dataset for the property
used_in_cooking), others can, with relatively high certainty, only be solved if a classifier
detects the target information (e.g. sweet, juicy, yellow).

Step 3 The diagnostic experimental set-up for the analysis of context-free embeddings
introduced in Chapter 8 shows how the diagnostic dataset in combination with control
tasks can be used as a powerful diagnostic tool. The particular distribution of examples in
combination with the comparison against control tasks can minimize the change of accidental
correlations. The emphasis on challenging examples in the diagnostic dataset (i.e. positive
and negative examples of a property that have high semantic similarity, but differ with respect
to the target property, such as duck and rabbit with respect to the property fly) allow for a
targeted analysis of property representation. The contrastive nature of the diagnostic dataset
also allowed for a corpus analysis of property evidence that could be used to verify the results
of the diagnostic experiments.

Eliciting Semantic Judgments from the Crowd

Step 2 Another requirement for a diagnostic dataset is that it should contain reliable semantic
information. Conceptual knowledge is difficult to capture and can be interpreted differently
by different people. This openness for interpretation is a reflection of various linguistic and
cognitive phenomena. In order to cover the range of possibilities on the spectrum of clear-cut
cases (e.g. yellow - lemon) to high degrees of ambiguity or vagueness (fly - bat, yellow -
leopard), I opted for eliciting semantic judgments from crowd annotators.

Eliciting fine-grained semantic judgment from untrained crowd annotators poses a chal-
lenge and requires careful task design and monitoring of the annotation process (Chapter 5).
In a task for which varying interpretation of annotation units are expected, quality assess-
ment cannot rely on agreement. To establish quality given valid disagreement, I provide a
systematic evaluation of alternative quality metrics. I show that simple, coherence-based
checks pose an alternative to agreement and can be used to distinguish reliable from unreliable
annotations.
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The second part of the evaluation presented in Chapter 6 assessed the degree to which
crowd annotators were able to make fine-grained semantic distributions. Some property-
concept relations, however, seem to be too difficult for untrained crowd annotators given the
current task set-up. The two relations expressing a different type of typicality (typical_-
of_property: red-blood v.s. typical_of_concept: green-broccoli) were not suffi-
ciently distinguished by the annotators. It might be the case this difficulty arises from the task
design; both relations are expressed similarly and it is possible that annotators did not spot
the difference.

Semantic Properties in Context-Free Representations?

The results obtained from using diagnostic methods, in particular diagnostic classification, are
often difficult to interpret. Above random, but clearly not perfect performance of a diagnostic
classifier could indicate that property-information is captured by only a subset of examples
(valid outcome) or that the classifier identified a spurious correlation that held for some, but
not all examples in the dataset, such as a semantic category that happened to correlate with
some, but not all positive examples (e.g. BERRY for the property red). The latter outcome is
misleading. In order to distinguish between valid and misleading outcomes, I used baselines
and control tasks against which the diagnostic classifiers could be compared. A good control
task ‘simulates’ a scenario in which a classifier cannot access the target property, but can
instead rely on other information that leads to reasonable performance. Performance above
the control classifier indicates that the target information was indeed identified successfully.

The diagnostic experiments presented in Chapter 8 show little evidence that property-
specific information is systematically represented in context-free distributional representations.
The semantic control task in combination with the architecture of the diagnostic dataset
provided strong indications that context-free embeddings do not encode information about
perceptual properties (colors, temperatures, shapes). This observation was confirmed in an
analysis of challenging examples (concept pairs with high semantic similarity that can be
distinguished by the target property).

For other properties, the experiments did show at least partial indications that property-
information could be encoded (e.g. square, used_in_cooking, lay_eggs, juicy). However,
the analysis of the diagnostic power of the property datasets for these properties (Chapter 7)
indicated that the example distribution for the high performing properties (in particular square,
used_in_cooking and lay_eggs) runs risk of containing unwanted correlations. The results of
the corpus analysis presented in Chapter 7 cast additional doubt on whether the diagnostic
classifiers could indeed identify property-specific evidence.

The results of the error analysis (Chapter 8) in combination with the corpus analysis (Chap-
ter 9) provide first indications that semantic information in the embedding representations
captures fine-grained semantic categories rather than specific properties. The classification
errors indicate that even well-performing classifiers cannot make distinctions between highly
related (or similar) concepts (e.g. wheels: car vs. windshield). However, many examples can
be classified correctly on the basis of fine-grained categories (e.g. luggage v.s. passenger may
be distinguishable by means of their semantic category difference). The analysis of property
evidence in corpora supports this indication; the most commonly found evidence of semantic
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properties is not expressed by means of direct expressions of the target property (e.g. red:
red), but indirectly, through other concepts that share the target property (e.g. red: blood,
paint).

Challenges of Analyzing Contextualized Models

Step 3 The diagnostic dataset and methodological framework of this thesis have primarily
been designed to analyze context-free embeddings. Contextualized language models have
access to the same type of information (i.e. corpus data) as context free models. Thus, many
of the core considerations still apply to diagnostic experiments for contextualized models.
Nevertheless, their architectures and training regimes differ substantially from context-free
embeddings, which poses a number of additional challenges for interpretability experiments.
Most importantly, it is not trivial to extract a representation of an individual word, as the
model represents words given a particular context in multiple layers of a network.

Rather than using internal representations of the models in diagnostic classification tasks,
I opted for two behavioral tasks (introduced in Chapter 10): As an initial approach, I examined
pre-trained models by exploiting the contrastive nature of the diagnostic dataset to compare
token probabilities in masked token prediction tasks. The tasks tested to what degree the
probabilities assigned to tokens given a particular context can distinguish between positive
and negative property concept associations (e.g. The sea is blue. vs The apple is blue). The
results indicated that for a subset of properties, systematic differences between positive and
negative examples can be detected. However, it remains difficult to assess what (often quite
small) differences in token probabilities mean and how such probabilities translate to the
reasoning abilities of the models.

To gain a deeper understanding of the potential of the language models to engage in
reasoning over properties, I presented an approach in which the diagnostic dataset was used
for the automatic generation of a Winograd-style challenge dataset. The task was used to
examine whether models pretrained on a large dataset of Winograd sentences (Winogrande)
can also perform well on semantic properties. The Winogrande dataset was designed to test
the ability of models to engage in common sense reasoning. For all properties, the models
achieved performance barely above a random baseline. An examination of potential biases in
the template-based dataset revealed that the models seemed to have based their decisions on
specific discourse structures rather than property information; the models could not predict
the correct answers given an unconventional discourse structure in a high number of instances.

The behavior of the fine-tuned models is not necessarily evidence that language models are
not able to reason over semantic properties. Rather, it illustrates the difficulties of examining
contextualized models. Fine-tuning may introduce biases that lead to the correct answers for
the wrong reason. In the case of the models fine-tuned on Winogrande, it remains difficult to
determine whether the behavior of the models is a reflection of such a bias or whether the
signal from the discourse structure was simply stronger than the signal that arose from the
property-concept combinations.
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Modeling the Dynamics of Property Expression in Corpora

Step 1 One of the goals of this thesis was to find out what underlying factors drive the
explicit expression of property evidence in texts. Based on theoretical and empirical linguistic
research, I have proposed a framework of factors that could impact to what degree conceptual
knowledge is made explicit in texts (Chapter 3). The models allows for deriving specific
hypotheses about property expressions.

Step 2 To test the hypotheses derived from the model, I have designed and collected a dataset
of properties, concepts, and property-concept relations that represent the different linguistic
factors that may determine property expression. The crowd annotation task presented in
Chapter 5 resulted in a dataset of fine-grained semantic judgments of property-concept pairs
that reflect these linguistic factors. The analysis of the dataset (Chapter 7) showed that the
individual linguistic factors (e.g. impliedness, affordedness, variability) interact in complex
ways, making it difficult to use the annotated dataset for testing individual hypotheses. The
corpus analysis presented in Chapter 9 constitutes an attempt to analyze the expression of
property evidence with respect to specific linguistic factors on the basis of a selection of
property-concept pairs. The analysis is based on few examples and can thus not yield reliable
insights.

Future Work

The research presented in this thesis illustrates that the interaction between semantic infor-
mation, distributional data, and different language model architectures and training regimes
is complex and not yet well understood. The methodological considerations and diagnostic
experiments highlight the difficulties involved in drawing sound conclusions from different
interpretability experiments involving machine learning. The work presented in this thesis
has also served to illustrate the importance of careful dataset design and construction that
anticipates methodological challenges of interpretability experiments. On the basis of these
observations, I propose the following directions for future research:

Data manipulation experiments A possible means of gaining a better understanding of
the interaction between distributional models and linguistic co-occurrence patterns could be
controlled context manipulation experiments. It could be considered to simulate different
types and distributions of property evidence and test how the different evidence constellations
affect the outcome of diagnostic experiments. Such experiments could also give insights into
how different architectures for context-free models (in particular architectures designed for
small data mentioned in Chapter 1 react to linguistic contexts.

Full exploitation of the template-based dataset The template-based approach for gen-
erating evaluation data introduced in Chapter 10 could be a promising tool for a closer
examination of what signals contextualized models are sensitive to during fine-tuning. While
template-based instances have the disadvantage of sounding ‘unnatural’, they have the ad-
vantage of enabling highly controlled experiments. The analysis presented in Chapter 10
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showed systematic variations in the templates can be exploited for error analysis. Beyond
this, variations in templates can also be exploited to investigate what models learn during
fine-tuning. By using different, controlled distributions during fine-tuning, it is possible
to explore what kinds of generalizations models tend to make; do they rely on superficial
patterns of do they pick up property-specific information?

Extension of the diagnostic dataset As a final point, the diagnostic dataset could be
improved on two levels: Firstly, the diagnostic power of the datasets could be increased
by strategically adding challenging and informative examples to property datasets with a
less challenging example distribution. Secondly, the statements used to express fine-grained
relations between properties and concepts could be revised in such a way that crowd annotators
can distinguish them with higher reliability. Such a revision may entail a simplification of the
original framework of property-concept relations proposed in Chapter 3.
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Usecases: Variation and Change

Detailed overview of hypotheses and outcomes

Table 1 provides an overview of the hypothesized changes in the conceptual system of racism
and observed changes in two models.

word1 word2 Hypothesis Coha-sgns Ngrams-sgns

racial cultural closer - -
racial superior apart - -
racial inferior apart apart -
racial blacks apart - -
racial whites apart apart closer
racial marriage apart - closer
racial relationships apart - -
racial genetics apart OOV OOV
racial nigger apart closer closer
racial yankee apart - -
racial gypsy apart - -
cultural superior apart closer apart
cultural inferior apart - apart
cultural blacks apart - closer
cultural whites apart - closer
cultural marriage apart - apart
cultural relationships apart - -
cultural genetics apart OOV OOV
cultural nigger apart closer -
cultural yankee apart - -
cultural gypsy apart - -
racial immigrant closer - apart
racial foreigner closer apart -
racial national closer - apart
racial Turks closer OOV OOV
racial Arabs closer - -
racial Jews closer apart -
racial religious closer closer -
racial linguistic closer - -
racial values closer apart closer
racial attitudes closer - apart
racial beliefs closer - apart
racial historic closer apart -
racial different closer - -
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USECASES: VARIATION AND CHANGE

cultural immigrant closer - -
cultural foreigner closer - -
cultural national closer closer -
cultural Turks closer - -
cultural Arabs closer - -
cultural Jews closer - -
cultural religious closer closer -
cultural linguistic closer - closer
cultural values closer closer closer
cultural attitudes closer - -
cultural beliefs closer - -
cultural historic closer - -
cultural different closer closer -

Table 1: Overview of hypothesized changes and results in of the SGNS model in COHA and
the google n-grams. The forms of racial and cultural have been adapted to match word2 in
part of speech and number. closer indicates a significant change towards each other and apart
a significant increase in distance, - means no significant change.
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Annotation task

Variability and specification for scalar and binary properties The expression of the
variability relation has to be adapted for certain types of properties. For scalar or binary
properties (e.g. temperatures, being dangerous), the spectrum for variability is limited to a
scale or two options. I use the relation variability_limited for the most restricted
version: variation between two extremes. The relation variability_open represents
scenarios in which all values on a scale are possible.

The examples below illustrate the intention behind the relations. A pistol is typically
dangerous, but could be harmless if it is not loaded or fake. It is unlikely to find somewhat
dangerous pistols. Therefore, the relation variability_limited is appropriate. The
relation does not apply to instances in which variation on a scale is possible (Negative example
1) or to concepts for which the property is not variabiable (negative example 2; poison is
dangerous by definition ).

Relation: variability_limited

Positive example You can find (a/an) pistol which is dangerous. (A/an) pistol is usually
either dangerous or not dangerous. It cannot be a bit more or less dangerous.

Negative example 1: You can find (a/an) casserole which is warm. (A/an) casserole is
usually either warm or not warm. It cannot be a bit more or less warm.

Negative example 2: You can find (a/an) poison which is dangerous. (A/an) poison is usually
either dangerous or not dangerous. It cannot be a bit more or less dangerous.

Examples for variability_open again illustrate the contrast; water can have any
temperature on a continuous scale. Firearms, in contrast, are either dangerous or not danger-
ous.

Relation: variability_open

Positive example You can find (a/an) water which is cold. (A/an) water is usually either
cold, a bit more or less cold or the opposite of cold.

Negative example: You can find (a/an) firearm which is dangerous. (A/an) firearm is usually
either dangerous, a bit more or less dangerous or the opposite of dangerous.

It should be noted that for scalar properties, both variability relations express variation
along a limited spectrum. The difference between variability_limited and vari-
ability_open is most likely smaller than for other properties.
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ANNOTATION TASK

Variability and specification for part properties For part properties, it the distinction
between a limited and open range of alternatives to the part does not make sense. What
is important to know is whether part properties introduce an important distinction between
different instances of concepts (similar to black v.s. grey v.s. brown bears) or not (similar to
t-shirts of different colors). Therefore, the statements for part properties are formulated as
follows:

Relation: variability_limited

Positive: You can find (a/an) vehicle which has (a/an) wheels. (A/an) vehicle usually either
has an wheels or no wheels. This distinguishes a certain type of vehicle from others.

Negative: (’experiment2’, ’4’) You can find (a/an) automobile which has (a/an) wheels.
(A/an) automobile usually either has an wheels or no wheels. This distinguishes a certain
type of automobile from others.

Relation: variability_open

Positive: You can find (a/an) machine which has (a/an) wheels. (A/an) machine usually
either has (a/an) wheels or no wheels but this does not distinguish a certain type of machine
from others.

Negative: You can find (a/an) falcon which has (a/an) wings. (A/an) falcon usually either
has (a/an) wings or no wings. This distinguishes a certain type of falcon from others.
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Crowd Annotation Evaluation

prop concept prop_true uas_true acc.

green asparagus 1.00 1.00 ✓

green crocodile 1.00 1.00 ✓

made_of_wood lath 1.00 1.00 ✓

used_in_cooking chickpea 1.00 1.00 ✓

black coffee 1.00 1.00 ✓

used_in_cooking pasta 1.00 1.00 ✓

used_in_cooking onion 1.00 1.00 ✓

used_in_cooking garlic 1.00 1.00 ✓

wings sparrow 1.00 1.00 ✓

sweet loquat 1.00 1.00 ✓

blue sapphire 1.00 1.00 ✓

swim guppy 1.00 1.00 ✓

black currawong 0.88 0.87 ✓

made_of_wood harp 0.88 0.88 ✓

wheels motorbike 0.88 0.88 ✓

wheels coupe 0.88 0.87 ✓

round globe 0.86 0.91 ✓

hot pastry 0.86 0.85 ✓

dangerous gang 0.75 0.77 ✓

wheels jeep 0.75 0.76 ✓

used_in_cooking slicer 0.75 0.76 ✓

fly gallinule 0.75 0.75 ✓

green tank 0.75 0.75 ✓

sweet currant 0.75 0.75 ✓

lay_eggs laridae 0.71 0.72 ✓

dangerous hack 0.71 0.67 ✓

hot toaster 0.67 0.67 ✓

black insect 0.62 0.64 ✓

round barrel 0.62 0.70 ✓

red brick 0.62 0.61 ✓

Table 2: 30 randomly chosen examples of the relation typical_of_concept ranked by
the proportion of positive responses.
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CROWD ANNOTATION EVALUATION

prop concept prop_true uas_true acc.

dangerous gun 1.00 1.00 ✓

warm heat 1.00 1.00 ✓

sweet candy 1.00 1.00 ✓

sweet honey 1.00 1.00 ✓

warm sun 1.00 1.00 ✓

wheels auto 1.00 1.00 ✓

green lime 1.00 1.00 ✓

sweet cake 0.90 0.90 ✓

juicy raspberry 0.88 0.88 ?
made_of_wood stick 0.86 0.93 ✓

hot firewood 0.86 0.85 ✗

juicy apple 0.78 0.79 ✓

roll cylinder 0.75 0.77 ✗

green spinach 0.75 0.75 ?
green crocodile 0.75 0.75 ?
made_of_wood lumber 0.75 0.74 ✓

lay_eggs merganser 0.75 0.74 ✗

warm coat 0.67 0.67 ✓

wheels buggy 0.67 0.66 ✗

used_in_cooking aubergine 0.67 0.66 ✗

yellow flower 0.67 0.66 ?
sweet raspberry 0.67 0.66 ✗

made_of_wood headstock 0.62 0.64 ✗

round disc 0.62 0.67 ✗

swim grindle 0.62 0.61 ✗

green pear 0.62 0.62 ✓

red ladybird 0.62 0.63 ?
juicy mangosteen 0.62 0.62 ✗

juicy chutney 0.57 0.56 ✗

sweet cider 0.57 0.59 ✗

Table 3: 30 randomly chosen examples of the relation typical_of_property ranked
by the proportion of positive responses.
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prop concept prop_true uas_true acc.

wings currawong 1.00 1.00 ✓

used_in_cooking pepperoni 1.00 1.00 ✓

used_in_cooking slaw 1.00 1.00 ✓

wheels truck 1.00 1.00 ✓

hot percolator 1.00 1.00 ✓

used_in_cooking oven 1.00 1.00 ✓

round frisbee 1.00 1.00 ✓

dangerous handgun 1.00 1.00 ✓

wings peregrine 1.00 1.00 ✓

made_of_wood wood 0.89 0.88 ?
juicy tomato 0.89 0.89 ✓

sweet huckleberry 0.89 0.89 ✓

green crocodile 0.88 0.87 ✓

warm coffee 0.88 0.87 ✓

green leafs 0.88 0.88 ✓

made_of_wood rafter 0.88 0.88 ?
used_in_cooking steak 0.88 0.87 ✓

warm attire 0.83 0.82 ✓

warm vest 0.75 0.75 ✓

hot roast 0.75 0.73 ?
green lettuce 0.67 0.66 ✗

hot tub 0.67 0.67 ✓

juicy burger 0.67 0.66 ?
round dough 0.67 0.64 ✗

sweet banana 0.62 0.63 ✓

square photocopier 0.62 0.63 ✓

green seaweed 0.62 0.62 ?
sweet plantain 0.60 0.61 ✓

green asparagus 0.57 0.56 ✗

hot dish 0.56 0.56 ✓

Table 4: 30 examples of the relation affording_activity.
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CROWD ANNOTATION EVALUATION

prop concept prop_true uas_true acc.

lay_eggs timaliidae 1.00 1.00 ✓

fly nuthatch 1.00 1.00 ✓

fly motacilla 1.00 1.00 ✓

roll wheel 1.00 1.00 ✓

fly avocet 1.00 1.00 ✓

fly stork 1.00 1.00 ✓

swim sunfish 1.00 1.00 ✓

lay_eggs duck 1.00 1.00 ✓

swim scaup 1.00 1.00 ✓

swim shark 1.00 1.00 ✓

lay_eggs pintail 1.00 1.00 ✓

swim anglerfish 1.00 1.00 ✓

swim halfbeak 1.00 1.00 ✓

swim otter 1.00 1.00 ✓

fly ouzel 1.00 1.00 ✓

lay_eggs phalacrocorax 1.00 1.00 ✓

lay_eggs tanager 1.00 1.00 ✓

lay_eggs calidris 0.89 0.89 ✓

swim sheldrake 0.89 0.90 ✓

lay_eggs utahraptor 0.89 0.87 ✓

lay_eggs crocodile 0.88 0.87 ✓

swim shrimp 0.88 0.87 ✓

lay_eggs paridae 0.88 0.87 ✓

lay_eggs strigidae 0.86 0.86 ✓

lay_eggs cotingidae 0.78 0.78 ✓

lay_eggs micropterus 0.78 0.77 ✓

fly pheasant 0.71 0.74 ✓

lay_eggs platypus 0.71 0.72 ✓

lay_eggs creeper 0.62 0.62 ✓

swim goldeneye 0.60 0.60 ✓

Table 5: 30 examples of the relation afforded_usual.
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prop concept prop_true uas_true acc.

swim primate 1.00 1.00 ✓

roll candle 1.00 1.00 ✓

swim bloodhound 0.89 0.90 ✓

swim boa 0.89 0.89 ✓

roll rifling 0.88 0.86 ?
roll grip 0.88 0.88 ✓

roll radiator 0.88 0.86 ✗

roll crankshaft 0.86 0.85 ✗

roll paddle 0.78 0.78 ✓

swim panther 0.75 0.74 ✓

swim wolf 0.75 0.76 ✓

roll footrest 0.75 0.73 ✗

roll eyelet 0.75 0.74 ✓

swim basset 0.71 0.71 ✓

swim bear 0.71 0.71 ✓

roll lever 0.71 0.74 ✗

swim pug 0.67 0.66 ✓

swim boar 0.67 0.70 ✓

roll bead 0.62 0.63 ✓

swim pony 0.62 0.63 ✓

roll windscreen 0.62 0.57 ✗

swim pig 0.62 0.64 ✓

roll calliper 0.57 0.61 ✗

roll hammer 0.57 0.57 ✗

lay_eggs tropicbird 0.57 0.56 ✗

swim leopard 0.57 0.57 ✓

roll surfboard 0.57 0.59 ✗

swim glutton 0.56 0.55 ✓

swim mankind 0.56 0.54 ✗

roll noseband 0.56 0.55 ✗

Table 6: 30 examples of the relation afforded_unusual.
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CROWD ANNOTATION EVALUATION

prop concept prop_true uas_true acc.

used_in_cooking corn 1.00 1.00 ✓

yellow sun 1.00 1.00 ✓

made_of_wood trestle 1.00 1.00 ✓

black sapsucker 1.00 1.00 ✓

green combretum 0.89 0.89 ✓

yellow daffodil 0.88 0.88 ✓

made_of_wood ladder 0.88 0.88 ✓

red strawberry 0.88 0.88 ✓

used_in_cooking rice 0.88 0.88 ✓

red lentil 0.88 0.89 ✓

black gorilla 0.88 0.88 ✓

made_of_wood fingerboard 0.88 0.87 ✓

black aubergine 0.86 0.86 ✓

roll tub 0.83 0.84 ?
made_of_wood washtub 0.75 0.74 ✓

juicy corn 0.75 0.74 ✓

red marinade 0.71 0.70 ✓

roll saw 0.71 0.72 ?
round pumpkin 0.71 0.74 ✓

green strawberry 0.70 0.70 ✓

juicy dessert 0.64 0.64 ✓

dangerous firearm 0.62 0.62 ?
round beet 0.62 0.62 ✓

used_in_cooking cutlet 0.62 0.63 ?
black sand 0.62 0.60 ✓

square computer 0.62 0.62 ✗

sweet soy 0.57 0.58 ✓

sweet bacca 0.57 0.64 ✓

blue caterpillar 0.57 0.56 ✓

juicy fennel 0.56 0.56 ✓

Table 7: 30 examples of the relation variability_limited.
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prop concept prop_true uas_true acc.

hot tortilla 1.00 1.00 ✓

black car 1.00 1.00 ✓

square room 1.00 1.00 ✓

blue umbrella 1.00 1.00 ✓

green dress 1.00 1.00 ✓

round salad 1.00 1.00 ?
square snack 0.88 0.88 ✓

hot bathroom 0.86 0.85 ✓

red clarinet 0.83 0.83 ✓

blue football 0.80 0.78 ✓

warm hat 0.78 0.78 ✓

made_of_wood puppet 0.75 0.76 ✓

warm sock 0.75 0.75 ✓

square clipboard 0.71 0.72 ?
juicy strawberry 0.67 0.67 ✓

warm sandal 0.67 0.67 ?
hot tub 0.67 0.68 ✓

warm linen 0.67 0.67 ✓

round pie 0.67 0.64 ✓

dangerous reduviidae 0.62 0.60 ✓

square washroom 0.62 0.61 ✓

hot firebox 0.62 0.65 ✓

made_of_wood rudder 0.62 0.59 ✓

warm dad 0.60 0.60 ✓

warm anklet 0.60 0.67 ?
dangerous colchicine 0.57 0.58 ✓

dangerous freebooter 0.57 0.57 ✓

warm sword 0.56 0.55 ?
square file 0.56 0.54 ?
made_of_wood shaft 0.56 0.56 ✓

Table 8: 30 examples of the relation variability_open.
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CROWD ANNOTATION EVALUATION

prop concept prop_true uas_true acc.

square barrel 1.00 1.00 ✓

green piano 1.00 1.00 ✓

warm lemonade 0.91 0.91 ✓

blue clarinet 0.88 0.87 ✓

red cowpeas 0.86 0.84 ✓

green wasp 0.86 0.86 ✓

hot cooler 0.83 0.84 ✓

black corn 0.83 0.83 ✓

black supermarket 0.78 0.78 ✓

black brick 0.75 0.75 ✓

dangerous naproxen 0.75 0.76 ✓

yellow cherry 0.75 0.76 ✓

red ring 0.75 0.74 ✓

dangerous club 0.71 0.72 ✓

hot can 0.71 0.72 ✓

green aubergine 0.70 0.70 ✓

yellow soursop 0.67 0.67 ?
yellow lagoon 0.67 0.68 ✓

round pasta 0.67 0.67 ?
yellow football 0.67 0.67 ✓

wheels trap 0.62 0.62 ✓

red eye 0.62 0.58 ✓

blue frogfish 0.62 0.62 ✓

made_of_wood windshield 0.62 0.62 ✓

hot soot 0.57 0.58 ✓

made_of_wood flatcar 0.57 0.59 ?
black sheep 0.57 0.56 ?
made_of_wood pedal 0.57 0.57 ?
blue daisy 0.56 0.55 ✓

yellow lavandula 0.56 0.55 ✓

Table 9: 30 examples of the relation rare.
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prop concept prop_true uas_true acc.

hot flowerpot 1.00 1.00 ✓

round bottle 1.00 1.00 ?
blue oven 0.90 0.91 ✓

yellow huckleberry 0.90 0.89 ✓

used_in_cooking sickle 0.89 0.88 ✓

sweet salad 0.88 0.88 ✓

black dolphin 0.78 0.74 ✓

sweet fry 0.78 0.77 ✓

green cherry 0.78 0.77 ✓

used_in_cooking spanner 0.75 0.75 ✓

wings scooter 0.75 0.75 ✓

sweet bacon 0.75 0.74 ✓

dangerous penicillin 0.75 0.75 ✓

dangerous pusher 0.71 0.70 ✓

red jeep 0.71 0.67 ?
roll hammer 0.71 0.72 ✓

sweet cucumber 0.70 0.70 ✓

blue aubergine 0.67 0.67 ✓

yellow thundercloud 0.67 0.67 ✓

dangerous cure 0.67 0.66 ✓

blue daisy 0.67 0.66 ✓

wheels chaise 0.62 0.63 ✓

swim bulldog 0.62 0.62 ✓

blue flame 0.62 0.63 ✗

square cds 0.62 0.62 ✓

yellow frog 0.60 0.59 ✓

wings automobile 0.57 0.53 ✓

warm frock 0.57 0.57 ?
green crab 0.56 0.55 ✓

blue grapefruit 0.56 0.55 ✓

Table 10: 30 examples of the relation unusual.

Distinctiveness of relations

rel1 rel1_with_rel2 rel1_rel2 rel2_with_rel1 rel2

afforded_usual 0.83 0.82 0.99 typical_of_concept
afforded_usual 0.97 0.81 0.83 implied_category
affording_activity 0.90 0.74 0.81 implied_category
implied_category 0.85 0.74 0.85 typical_of_concept
affording_activity 0.91 0.71 0.76 typical_of_concept
rare 0.88 0.61 0.66 unusual
typical_of_concept 0.59 0.58 0.98 typical_of_property
affording_activity 0.62 0.57 0.86 typical_of_property
implied_category 0.56 0.53 0.93 typical_of_property
afforded_usual 0.49 0.48 0.97 typical_of_property
typical_of_concept 0.47 0.32 0.51 variability_limited
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CROWD ANNOTATION EVALUATION

implied_category 0.44 0.30 0.49 variability_limited
creative 0.57 0.29 0.37 impossible
affording_activity 0.50 0.29 0.40 variability_limited
afforded_unusual 0.37 0.26 0.46 unusual
afforded_unusual 0.28 0.24 0.62 rare
typical_of_property 0.44 0.21 0.29 variability_limited
typical_of_concept 0.26 0.17 0.33 variability_open
creative 0.43 0.16 0.21 unusual
afforded_unusual 0.28 0.16 0.27 creative
affording_activity 0.24 0.15 0.26 variability_open
afforded_unusual 0.21 0.15 0.39 variability_limited
rare 0.30 0.15 0.22 variability_open
implied_category 0.24 0.15 0.29 variability_open
variability_limited 0.21 0.14 0.28 variability_open
rare 0.34 0.14 0.20 variability_limited
unusual 0.24 0.14 0.24 variability_open
afforded_unusual 0.39 0.13 0.17 implied_category
unusual 0.26 0.13 0.21 variability_limited
typical_of_property 0.25 0.12 0.20 variability_open
creative 0.28 0.12 0.17 rare
impossible 0.21 0.10 0.15 unusual
afforded_usual 0.09 0.08 0.33 variability_limited
afforded_unusual 0.14 0.05 0.07 afforded_usual
afforded_unusual 0.11 0.04 0.05 impossible
creative 0.14 0.04 0.06 variability_limited
creative 0.11 0.03 0.04 variability_open
afforded_unusual 0.07 0.03 0.06 typical_of_property
impossible 0.05 0.03 0.05 rare
afforded_unusual 0.07 0.03 0.04 typical_of_concept
afforded_usual 0.01 0.01 0.03 creative
creative 0.03 0.01 0.01 implied_category
afforded_usual 0.01 0.01 0.02 unusual
implied_category 0.01 0.01 0.02 rare
implied_category 0.01 0.01 0.02 unusual
impossible 0.00 0.00 0.00 variability_limited
creative 0.01 0.00 0.01 typical_of_concept
affording_activity 0.01 0.00 0.01 unusual
affording_activity 0.00 0.00 0.00 creative
creative 0.01 0.00 0.01 typical_of_property
afforded_usual 0.00 0.00 0.02 rare
typical_of_property 0.00 0.00 0.00 unusual
typical_of_concept 0.00 0.00 0.00 unusual
rare 0.00 0.00 0.00 typical_of_concept
implied_category 0.00 0.00 0.00 impossible
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DISTINCTIVENESS OF RELATIONS

Table 13: Analysis of intersections between property-concept pairs annotated with relations.
The table shows the proportion of pairs annotated with rel1 that have also been annotated
with rel2 and vice-versa. The table also shows the proportion of pairs annotated with rel1 and
rel1 out of all pairs annotated with either rel1 or rel2.
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CROWD ANNOTATION EVALUATION

prop concept prop_true uas_true acc.

swim buzzard 1.00 1.00 ✓

lay_eggs cow 1.00 1.00 ✓

used_in_cooking violin 1.00 1.00 ✓

blue jaguar 1.00 1.00 ✓

swim whiff 0.89 0.90 ✓

fly poacher 0.89 0.88 ✓

blue wasp 0.89 0.89 ✓

fly catfish 0.89 0.89 ✓

wings hearse 0.88 0.87 ✓

fly jalopy 0.88 0.87 ✓

fly rudd 0.88 0.88 ✓

wheels windshield 0.88 0.88 ✓

blue avocado 0.88 0.87 ?
lay_eggs deer 0.88 0.87 ✓

wings sedan 0.80 0.80 ✓

blue ketchup 0.78 0.77 ?
lay_eggs felid 0.75 0.77 ✓

black fir 0.75 0.77 ✓

red hazelnut 0.71 0.73 ✓

wheels gondola 0.71 0.72 ?
sweet wintergreen 0.67 0.66 ✓

wheels freighter 0.62 0.61 ?
wings diver 0.62 0.63 ✓

blue buttercup 0.60 0.61 ?
roll wrench 0.57 0.59 ?
roll hammer 0.57 0.57 ?
square disk 0.57 0.57 ✓

swim sparrow 0.57 0.57 ✓

juicy bulgur 0.56 0.55 ✓

made_of_wood steerer 0.56 0.54 ?

Table 11: 30 examples of the relation impossible.
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DISTINCTIVENESS OF RELATIONS

prop concept prop_true uas_true acc.

fly car 1.00 1.00 ✓

wings automobile 1.00 1.00 ✓

fly boat 0.86 0.85 ✓

roll plastic 0.86 0.90 ?
green raccoon 0.86 0.85 ✓

blue giraffe 0.78 0.78 ✓

juicy chip 0.75 0.76 ✓

fly sharpie 0.75 0.75 ✓

made_of_wood rock 0.71 0.71 ✓

fly roebuck 0.71 0.71 ✓

fly deer 0.71 0.71 ✓

hot vegetable 0.71 0.72 ✓

hot winter 0.70 0.61 ✓

fly lion 0.70 0.67 ✓

blue pit 0.67 0.66 ✓

fly seal 0.62 0.63 ✓

wings dozer 0.62 0.64 ✓

dangerous club 0.62 0.59 ✓

round chicken 0.62 0.62 ✓

sweet bulgur 0.62 0.63 ✓

lay_eggs howler 0.62 0.63 ✓

sweet vinaigrette 0.62 0.62 ✓

wings admiral 0.60 0.58 ✓

dangerous crease 0.60 0.54 ?
juicy emperor 0.60 0.60 ✓

round puree 0.57 0.58 ?
juicy kernel 0.57 0.58 ?
made_of_wood carabiner 0.57 0.56 ?
roll bumper 0.56 0.55 ?
fly steamer 0.56 0.57 ✓

Table 12: 30 examples of the relation creative.
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Dataset analysis

Psycholinguistic features in the property datasets

This section contains an analysis of psycholinguistic features in the diagnostic dataset.

• Figure 1 shows the distribution of concreteness scores.

• Figure 2 shows the distribution of familiarity scores.

• Figure 3 shows the distribution of imageability scores.
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PSYCHOLINGUISTIC FEATURES IN THE PROPERTY DATASETS
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Discourse structure in the Winogrande
development set

The full set of marked and unmarked examples extracted from the Winogrande development
split can be found in Table 14.

sentence marked bert roberta

Felicia liked wearing glasses more than braces because
she could take the _ off after two years.

marked correct correct

Felicia liked wearing braces more than glasses because
she could take the _ off after two years.

unmarked correct correct

Felicia liked wearing glasses more than braces because
she could take the _ off every day.

unmarked incorrect incorrect

Felicia liked wearing braces more than glasses because
she could take the _ off every day.

marked correct correct

Pete preferred to use the sheet to the blanket, because
the _ was much hotter.

marked correct correct

Pete preferred to use the blanket to the sheet, because
the _ was much hotter.

unmarked incorrect incorrect

Johnny likes fruits more than vegetables in his new keto
diet because the _ are saccharine.

unmarked correct incorrect

Johnny likes vegetables more than fruits in his new keto
diet because the _ are saccharine.

marked correct correct

Harold liked to play with dolls more than cars because
the _ talked back to him.

unmarked correct correct

Harold liked to play with cars more than dolls because
the _ talked back to him.

marked incorrect incorrect

Mark preferred his drinks in paper cups over styrofoam
cups because the _ are strong.

unmarked correct correct

Mark preferred his drinks in styrofoam cups over paper
cups because the _ are strong.

marked incorrect incorrect

She wanted to shop for more clothes and ultimately
decided on the velvet dress instead of the denim jacket
because the _ was more casual.

marked correct correct

She wanted to shop for more clothes and ultimately
decided on the velvet jacket instead of the denim dress
because the _ was more casual.

unmarked incorrect incorrect

The student liked writing their signature with a pen in-
stead of a pencil, because the _ showed up lighter.

marked correct incorrect

The student liked writing their signature with a pencil
instead of a pen, because the _ showed up lighter.

unmarked correct correct
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DISCOURSE STRUCTURE IN THE WINOGRANDE DEVELOPMENT SET

The student liked writing their signature with a pen in-
stead of a pencil, because the _ showed up darker.

unmarked incorrect incorrect

The student liked writing their signature with a pencil
instead of a pen, because the _ showed up darker.

marked correct correct

Aaron wanted to go the gym but the others wanted to go
to the park because the _ did require membership.

marked incorrect correct

Aaron wanted to go the park but the others wanted to go
to the gym because the _ did require membership.

unmarked correct correct

During the summer, I like visiting the zoo more than the
aquarium because the _ is inside.

marked incorrect incorrect

During the summer, I like visiting the aquarium more
than the zoo because the _ is inside.

unmarked correct correct

The musician liked playing at the auditorium more than
at the park because he sounded quieter at the _ .

marked correct correct

The musician liked playing at the park more than at the
auditorium because he sounded quieter at the _ .

unmarked incorrect incorrect

The musician liked playing at the auditorium more than
at the park because he sounded louder at the _ .

unmarked correct correct

The musician liked playing at the park more than at the
auditorium because he sounded louder at the _ .

marked incorrect incorrect

She chose the black car over the green car, because the
_ has more brighter color.

marked incorrect incorrect

She chose the green car over the black car, because the
_ has more brighter color.

unmarked correct correct

Table 14: Overview of marked and unmarked Winogrande examples extracted from the
development split.
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Summary

When we communicate with each other, a large chunk of what we express is conveyed by
the words we use. Computational models of language often rely on data-derived vector
representations of words. Such representations are based on large text corpora and capture the
many different contexts in which a word is used. For instance, the word lemon is represented
by all instances of the word lemon in a large text corpus. It can be argued that the meaning of
a word can be best characterized in terms of how the word is used. However, it is difficult
to determine what aspects of word meaning the text corpora underlying the representations
contain. Furthermore, it is unclear how the computational models used to create the word
representations react to different usage examples in the data.

Existing computational models of language perform well in some scenarios, but also
make silly mistakes humans would never make. Their successes and failures are likely to
be caused by what they know (or do not know) about the meaning of words. However, it is
unclear what aspects of word meaning data-derived representations capture and what they do
not capture. Do computational models know that lemons are yellow and round and have a
sour taste?

Usage-based word representations capture the meaning of words in terms of similarities
between usage patterns. Words that appear in similar linguistic contexts receive similar vectors.
Beyond general semantic similarity, it is very difficult to interpret such word representations.
Essentially, they constitute lists of numbers that only become meaningful when put into
relation to one another. For example, it is likely that the words lemon and orange have more
similar representations than the words lemon and computer. It is, however, not possible
to see why lemon and orange are similar. This is particularly problematic in cases where
the similarities reflected by the computational representations do not correspond to human
judgments of word similarities. This lack of transparency and interpretability has been
investigated in several areas of research outlined in Chapter 1. Chapter 2 presents two
use-cases that illustrate the limitations of such representations and the need for a better
understanding of what they represent when used to study words in specific texts or collections
of texts.

The main goal of this thesis is to shed light on the semantic representations of words,
which form the basis of many current computational models of language. What type of
semantic information tends to be expressed well through usage patterns in text corpora? What
aspects of semantic information tend to be absent from such corpora? Linguistic theories
and observations provide some indications about what we could expect from text corpora.
Chapter 3 brings together several theoretical approaches and observations and introduces a
framework of hypotheses about what we can expect from usage-based word representations.

To answer these questions, I draw on methods used to interpret representation created
by neural networks. Neural networks can learn to capture complex correlations, but it is not
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SUMMARY

easy to get insights into how they capture them. Methods that analyze such networks are
therefore referred to as ‘diagnostic’ methods. These methods are still relatively novel and
struggle with a number of challenges, in particular when used for the interpretation of word
representations. Such methods also require diagnostic datasets to study the representations
of specific words. Such methods require a set of informative example words. For instance,
we can test whether a model knows that some birds (e.g. seagulls and pigeons) can fly while
others cannot (e.g. penguins and ostriches). The instances in such a dataset should not
be too obvious. Diagnostic methods are informative if the distinctions between words are
challenging. Chapter 4 considers the methodological challenges of diagnostic methods and
presents the design of such a challenging diagnostic dataset.

The three chapters making up Part III of the thesis focus on the collection (Chapter 5),
evaluation (Chapter 6), and analysis (Chapter 7) of the diagnostic dataset. Crowd annotators
judged a selection of semantic properties (i.e. aspects of semantic information, such as being
able to fly and having a yellow color) and concepts (e.g. lemon, seagull, penguin). This
resulted in a dataset of 21 semantic properties. Each property has positive examples (e.g. the
property yellow has examples such as lemon and daffodil) and negative examples (e.g. the
words orange and bluebell do not carry the information yellow). The positive and negative
examples have been selected in such a way that they are difficult for a model to distinguish.

Several challenges are involved in the collection of fine-grained semantic judgments
from untrained linguistic annotators. Words are often ambiguous or vague and people have
different interpretations of whether a word is indeed associated with a specific property or not
(e.g. Would you describe a leopard as yellow?). At the same time, it is necessary to establish
whether crowd annotators deliver reliable judgments (instead of just randomly selecting
answers). This means that a substantial degree of disagreement between annotators can be
expected. Traditionally, this has been assessed by checking whether annotators agree with
each other.Chapter 6 proposes an alternative evaluation of crowd annotations that does not
rely on agreement. The method checks whether annotators deliver coherent responses. To
complement this evaluation, Chapter 7 provides an analysis of all 21 property datasets in
terms of their suitability for diagnostic experiments (Chapter 7).

Part IV presents experiments and analyses of language model representations on the
basis of the diagnostic dataset. A major focus of the experimental approaches in this part
is the interpretation of results in diagnostic set-ups. Representations of word meaning
are represented in complex high-dimensional vector spaces. When testing whether word
representations can be distinguished with respect to specific information (e.g. yellow: lemon
v.s. bluebell), it is difficult to determine whether the word representations have indeed been
distinguished on the basis of the target information or on the basis of other, interfering factors.
A main contribution of this part is the design of various baselines and control tasks that help
to determine whether a model does indeed capture a specific semantic property. The results of
the experiments together with an analysis of corpus data indicate that word representations are
unlikely to capture specific semantic properties (e.g. the fact that lemons are yellow). Rather,
they seem to reflect information about semantic categories (e.g. the fact that lemons are a
type of citrus fruit). These findings confirm tendencies that have already become apparent in
previous research from the perspective of model interpretability.
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